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Abstract: Diabetes is one of the most common metabolic diseases, ranking ninth in 

mortality worldwide. Although many effective hypoglycemic drugs are available for the 
treatment of diabetes, researchers are continually seeking more effective drugs with 
fewer side effects by focusing on various metabolic components such as enzymes, 
transporters, and receptors. The glucokinase (GK) enzyme, which is primarily found in 
the liver and pancreatic beta cells, is involved in maintaining blood glucose homeostasis. 
Therefore, this study was designed to determine the interaction between glucokinase and 
the compounds (ligands) from Javan olive leaf extract (Olea javanica) using GC-MS and 
in silico analysis. The method used in this study involved maceration with 96% ethanol to 
produce Javan olive leaf extract, followed by analysis via GC-MS using the Agilent 6980N 
Network GC System. Subsequently, in silico analysis was conducted using PyRx 0.9 
software, the pkCSM website, BIOVIA Discovery Studio 2019, the RCSB PDB database, 
AutoDock Vina, the CABS-flex 2.0 web server, and Lipinski's rules. The results of the GC-
MS analysis identified compounds such as 3 methylpentane, hexane, methylcyclopentan
e, alpha-muurolene, (-)-calamenene, methyl 14-methylpentadecanoic acid, methyl ester 
linoleic acid, trans-squalene, and alpha-tocopherol. In silico analysis revealed that the 
molecules matching the target protein for diabetes treatment are native ligands exhibiting 
antidiabetic activity, as determined by molecular docking in this study. 
 
Keywords: Diabetes, GC-MS, Glucokinase, In silico, Olea javanica  
 
INTRODUCTION 

The genus Olea comprises 12 species1. The family Oleaceae is 
commonly known as the olive family, with its members referred to as "olive" in 
English and "zaitoon" in Arabic. The health benefits of olive fruits and leaves 
have been widely researched concerning the treatment of respiratory diseases, 
urinary tract infections, and gastrointestinal disorders, while the oil is applied to 
the scalp to prevent bone loss and fractures2. In addition to traditional uses, the 
fruit and leaves have recently been reported to have antioxidant effects that could 
potentially benefit the skin3. 

 Research suggests that leaf extracts from olive plants such as Olea 
europaea and Olea ferruginea have potential as antidiabetic agents4,5. One of the 
close relatives of the olive that grows in Indonesia is the Javan olive (Olea 
javanica). This plant is an endemic species of Indonesia that has not been 
extensively studied for its bioprospective potential. Oleuropein is a phenolic 
compound believed to have hypoglycemic, antihypertensive, antioxidant, anti-
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inflammatory, and cardioprotective properties, as well as supportive effects in 
obesity therapy. 

In general, olive leaves have a rich content of phenols that are beneficial 
for human health6. Oleuropein is part of phenol compounds where oleuropein is 
thought to play a role as hypoglycemic, antihypertensive, antioxidant, anti-
inflammatory, cardioprotective, and supportive effects in obesity therapy. 
Oleuropein has potential as a hypoglycemic effect with the ability to increase 
glucose uptake into cells, thus it can be used as an alternative therapy for 
diabetes to control blood sugar levels7. 

One of the research on diabetes control therapy is by using glucokinase 
control. Glucokinase (GK or hexokinase IV) as a glucose sensor plays an 
important role in glucose homeostasis8. In pancreatic β-cells, it regulates insulin 
secretion in response to circulating blood glucose levels. In the liver, it facilitates 
glycogen storage and post-meal glucose clearance from the bloodstream. 
Additionally, in pancreatic α-cells, it participates in glucose-dependent regulation 
of glucagon secretion.  

One area of research in diabetes control therapy involves the regulation 
of glucokinase. Several studies have shown decreased levels of GK expression 
and activity in pancreatic cells in several animal models and humans with obesity 
and diabetes. Lu's research revealed that a high-fat diet can damage beta cells 
and induce diabetes9. This enzyme plays a crucial role in maintaining blood sugar 
balance in liver and pancreatic cells11. The use of separation techniques, such as 
liquid chromatography (LC) or gas chromatography (GC), prior to mass 
spectrometry (MS) detection, is common when analyzing complex plant-derived 
samples12.  

However, the chemical composition of Javan olive (Olea javanica) leaves 
remains largely unexplored. This study aims to identify phytochemicals through 
GC-MS analysis, quantify their abundance in Javan olive leaf extract, and assess 
their potential involvement in antidiabetic signaling pathways using an in silico 
approach. 

 
MATERIAL AND METHOD 

The materials used in this study included leaves from endemic Javan 
olive trees (Olea javanica) collected from wild populations in Mojokerto Regency, 
East Java. Additional materials used included 96% ethanol, filter paper, and 
aluminum foil. The laboratory equipment used in this study included an oven, 
analytical scales, beakers, dropper pipettes, a rotary evaporator, a vortex mixer, 
and a water bath. 
Leaf Collection 

Javan olive (Olea javanica) leaves were collected on July 1, 2023, from 
Mojokerto District, East Java, Indonesia (coordinates: -7.558369, +112.547966; 
altitude: 108.7 meters). The collected leaves were cleaned to remove dust and 
dirt, then dried in an oven at 60°C for 5 hours14. The dried leaves were then 
pulverized into a fine powder using a blender. 
Olive Leaf Extraction 

Olive leaf powder (250 grams) was homogenized using the maceration 
method by adding 96% ethanol (w/v) for 72 hours. The resulting macerate was 
filtered using filter paper and a rotary evaporator. The filtrate was then 
concentrated using a rotary vacuum evaporator and further processed with a 
water bath to produce pure olive leaf extract15. 
GC-MS Analysis 

Javan olive leaf extract was dissolved in 6 mL of ethanol, vortexed for 2 
minutes, and then sonicated for 15 minutes. The resulting solution was filtered 
through a 0.45 μm membrane filter, and a 1 μL aliquot was injected into the GC-
MS instrument. GC-MS analysis was performed using an Agilent 6980N Network 
GC System equipped with an Agilent 5973 inert MSD detector and a J&W 
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Scientific HP-5MS column (0.25 mm × 30 m × 0.25 μm). The oven temperature 
was programmed to increase from 150°C to 230°C at a constant flow rate of 1 
mL/min. 

Mass spectra were obtained and compared with the Wiley spectral library 
(version 8.0), which contains more than 62,000 reference spectra16. Compounds 
were identified based on the similarity of their mass spectra, retention times, and 
molecular formulas. The relative abundance of each identified compound was 
determined by calculating its peak area as a percentage of the total peak area of 
all detected compounds17. 
In Silico Analysis 

In silico docking simulations were performed to evaluate the binding 
interactions between secondary metabolites identified in Javan olive extract and 
target proteins. 
Ligand Preparation 

The 3D structures of the identified compounds (shown in Figure 2) were 
retrieved from public databases such as PubChem (https://pubchem.ncbi.nlm.nih.
gov/) and ChemSpider (https://www.chemspider.com). For PubChem-derived 
ligands, conformational optimization was performed using the Open Babel 2.3.1 
plug-in integrated within PyRx 0.9 software18. Ligands obtained from 
ChemSpider/1were downloaded in molar file format and converted to Canonical 
SMILES format using the CACTUS (Chemical Abstracting Computer Toolkit 
Service) website (https://cactus.nci.nih.gov/translate)19. Ligands obtained from 
ChemSpider were downloaded in mol file format and converted to Canonical 
SMILES format using the CACTUS (Chemical Abstracting Computer Toolkit 
Service) website (https://cactus.nci.nih.gov/translate)19. This optimization process 
enhances ligand flexibility and facilitates docking simulations20. 

 
Control Ligand Preparation 

Control ligands are known modulators or activators of the target protein. 
In this study, glucokinase activators were used as control ligands. 

 
Protein Preparation 

The 3D structure of the target protein, human glucokinase (GCK), was 
retrieved from the Protein Data Bank (PDB) database (http://www.rcsb.org/pdb/h
ome/home.do) using its specific identifier (ID). The protein structure was then 
processed using Biovia Discovery Studio 2019 software to remove any 
contaminant molecules21. 

 
Target Protein Modeling Analysis 

Protein preparation primarily involved the removal of water molecules and 
any bound ligands to facilitate visualization, docking simulations, and potentially 
molecular dynamics simulations. 

 
Specific Docking 

Molecular docking simulations were conducted using AutoDock Vina, 
integrated within the PyRx 0.9 software platform. It is important to note that 
docking primarily focuses on predicting ligand interactions within the protein's 
active site. Binding affinity, a measure of the strength of protein-ligand 
interactions, is inversely correlated with stability; lower binding affinity values 
indicate more stable complexes22. 

 
Chemical Interactions 

The resulting docking poses were visualized using Biovia Discovery 
Studio 2019 software to identify key interactions, including hydrogen bonds, 
hydrophobic interactions, electrostatic interactions, and unfavorable contacts. 

https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
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The formation of multiple hydrogen bonds is often indicative of a stable protein-
ligand complex, as these interactions contribute significantly to binding affinity23. 

 
Structural Visualizations 

Both 3D and 2D visualizations were generated using Biovia Discovery 
Studio 2019 software. Initial 3D representations of the ligands and the target 
protein were created to provide a global perspective. Subsequently, the focus 
shifted to a 2D view of the protein-ligand binding interface for a detailed analysis 
of intermolecular interactions. 

 
RESULTS AND DISCUSSION  
GC-MS Analysis Result 

Phytochemical analysis was conducted using gas chromatography-mass 
spectrometry (GC-MS). This technique enables the separation and identification 
of volatile compounds, including plant secondary metabolites. The resulting 
chromatogram visually represents the sample components, with each peak 
corresponding to a distinct compound24. The chromatogram of the ethanol extract 
from Javan olive leaves is presented in Figure 1, while the identified compounds 
and their relative abundances are summarized in Table 1. 
 
Table 1. Chemical Components of GC-MS Test Results of Endemic Javan Olive Leaf 
Extract 

Chemical Compound 
RT (Retention 

Time) 
Normalization% Qual 

3-methylpentane 1,81         2,71 91 

Hexane 1,88   50,46 93 

Methylcyclopentane 2,04   14,95 91 

Alpha-muurolene 17,51 0,12 99 

-(-calamenene) 17,81 0,12 91 

Methyl 14-

methylpentan 

decanoic acid 

22,09 0,47 98 

Methyl    ester    

linoleic acid 

23,80 0,89 99 

Trans squalene 29,95 1,68 91 

Alpha tocopherol 34,26 1,13 95 

 

The chromatogram presented in Figure 1 illustrates the relative 
abundance of each identified chemical class as a percentage of the total 
chromatographic peak area, determined using five analytical methods. A total of 
107 distinct compounds were detected in the chromatogram, with each peak 
corresponding to a unique chemical entity. However, the identification of certain 
compounds was hindered by low-quality scores (<90), indicating a lack of 
confidence in the spectral match. This discrepancy suggests that the sample's 
mass spectrum deviated significantly from the reference library spectrum, 
potentially due to factors such as background noise, ion source decomposition, 
weak signal intensity, or variations in collision energy. Consequently, this study 
provides an estimate of the overall percentage of unidentified compounds across 
the different analytical platforms. A substantial limitation of GC-MS phytochemical 
analysis is the necessity of authentic reference standards to precisely quantify 
and identify target analytes within intricate herbal matrices25. While GC-MS 
libraries offer a valuable resource for tentative compound identification based on 
spectral similarity, establishing definitive compound identity remains challenging 
due to potential spectral variations26. Known compounds identified in the GC-MS 
analysis included 3-methylpentane, hexane, methylcyclopentane, α-muurolene, (-
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)-calamenene, methyl 14-methylpentanoate, methyl linoleate, trans-squalene, 
and α-tocopherol. 
 

 
Figure 1. This is a figure GC-MS chromatogram of endemic javan olive leaf extract (O. 

javanica) 

 
The chromatogram revealed nine distinct peaks, each subjected to mass 

spectrometric analysis. GC-MS analysis confirmed the presence of nine volatile 
compounds belonging to various chemical classes. In descending order of 
relative abundance, these classes were identified as esters (21.61-60.49%), 
alcohols (20.73-49.2%), hydrocarbons (3-38.88%), ketones (0.16-3.87%), acids 
(0.07-2.62%), and aldehydes (0.12-1.47%). 

 
In Silico Results 

GC-MS analysis identified several compounds27 that adhered to Lipinski’s 
rule of five, suggesting potential drug-like properties. These compounds were 
subjected to computational docking with the GCK protein, with the lowest binding 
energy pose selected for each. Binding energy is a predictor of protein-ligand 
complex stability, wherein lower values indicate stronger interactions28. Table 2 
presents the docking results for the identified compounds: 3-methylpentane, 
hexane, methylcyclopentane, α-muurolene, (-)-calamenene, methyl 14-
methylpentadecanoic acid, methyl linoleate, trans-squalene, and α-tocopherol, 
demonstrating their potential to form stable protein-ligand complexes. 

 
Table 2. Results of molecular docking to determine binding affinity 

Chemical Compound       Protein Binding Affinity RMSD 

3-methylpentane 1,81 -4,1 0, 0 

Hexane 1,88 -4,0 0, 0 

Methylcyclopentane 2,04 -4,5 0, 0 

Alpha-muurolene 17,51 -7,9 0, 0 

-(-calamenene) 17,81 -8,3 0, 0 

Methyl 14-

methylpentan 

22,09 -6,6 0, 0 
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decanoic acid 

Methyl    ester    

linoleic acid 

23,80 -6,4 0, 0 

Trans squalene 29,95 -7,9 0, 0 

Alpha tocopherol 34,26 -7,7 0, 0 

 
Results of the Drug-likeness Property Assessment Based on Lipinski's 
Rule of Five 

The drug-likeness properties of the identified compounds were evaluated 
using Lipinski's rule of five, which stipulates that drug-like molecules typically 
possess a molecular weight below 500 Da, a Log P value less than 5, fewer than 
5 hydrogen bond donors, and fewer than 10 hydrogen bond acceptors29. As 
summarized in Table 3, α-muurolene and α-tocopherol from Javan olive leaf 
extract exceeded the Lipinski Log P threshold of 5. In contrast, 3-methylpentane, 
hexane, methylcyclopentane, methyl 14-methylpentadecanoic acid, methyl 
linoleate, and trans-squalene adhered to this criterion. Molecules with excessive 
hydrogen bond donors or acceptors tend to exhibit reduced chemical stability, 
potentially impacting their drug-like properties30. Non-compliance with any of 
these parameters can adversely affect a compound's absorption and bioavailabilit
y31. 

 
Table 3. Results of the analysis of the properties of drug-like chemical compounds based 
on the Lipinski rule 

Chemical Compound 
MW 
(≤500 
Da) 

Log P 
(≤5) 

HBD 
(≤5) 

HBA (≤10) MR(75-
150) 

3-methylpentane 86,18 3,52 0 0 30.96 

Hexane 86,18 3,52 0 0 30,96 

Methylcyclopentane 84,16 3,12 0 0 28,84 

Alpha-muurolene 204,35 4,63 0 0 69,04 

-(-calamenene) 202,34 5,45 0 0 68,07 

Methyl 14-

methylpentan 

decanoic acid 

 

254,41 

 

4,09 

 

1 

 

2 

 

80,32 

Methyl ester linoleic 

acid 

294,47 4,09 0 2 93,78 

Trans squalene 410,72 4,09 0 0 143,48 

Alpha tocopherol 430,71 6,14 1 2 139,27 

 
Protein Structure and Active Site 

The target protein for in silico docking simulations was chosen based on 
its relevance to the study and the availability of a suitable structure. Ideally, the 
target protein should possess a known activatory ligand and a high-resolution 
structure deposited in the Protein Data Bank (PDB). In this study, human 
glucokinase (PDB ID: 6E0E) was selected as the target protein due to its 
established role in glucose metabolism and the availability of a complex structure 
with an activatory ligand (HKM) deposited in the PDB. Control compounds, 
defined as known activators of the target protein or its original ligand, were also 
identified based on information from scientific databases. The downloaded PDB 
file for human glucokinase contained information about the protein's three-
dimensional (3D) structure, including its dimensions along the x, y, and z axes 
(23.6161 Å, 27.7023 Å, and 25.8563 Å, respectively) as reported in the reference 
source. The protein's active site residues were identified as Arg63, Pro66, Ile211, 
Val455, Met210, Tyr214, Ile159, Met235, Val62, and Val452. For visualization 
purposes, the 3D structure of the protein was rendered in a ribbon style, 
highlighting its secondary structure elements33. In this representation, red 
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indicates α-helices, light blue represents β-sheets, white represents loops, and 
green represents coils,as shown in Figure 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. 3D structure of the target protein: Human glucokinase (insulin production 
activator) 

The identified compounds within the O. javanica leaf extract are listed in 
Table 4, along with their corresponding Chemical Identifier (CID) and source 
database. The 3D structures of these compounds are depicted in stick 
representation in Figure 2, where carbon atoms are colored green, oxygen atoms 
red, and hydrogen atoms white. It is important to note that some compounds 
could not be identified or retrieved from the available databases. 

 
Table 4. Phytochemical Compounds in PubChem: Those without HMDB and Those with 
HMDB 

Chemical Compound CID Figure of Compound 

3-methylpentane 
 

7282 

 
Hexane HMDB002

9600 

 
Methylcyclopentane 7296 

 
Alpha-muurolene 12306047 

 
 

-(-calamenene) HMDB005
9910 

 
Methyl 14-methylpentan 

decanoic acid 
HMDB004

1422 
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Methyl ester linoleic acid HMDB003
4381 

 
Trans squalene HMDB000

0256 

 
Alpha tocopherol 14985 

 
 

 

  
Molecular docking results of Javan olive compounds activating human 
glucokinase protein 

Molecular docking simulations were performed to evaluate the binding 
interactions between the test compounds and human glucokinase. Binding 
affinity, a measure of the strength of the ligand-protein complex, was determined 
for each compound34. A lower binding energy value corresponds to a more stable 
complex, often indicative of increased activatory potency. The native ligand for 
glucokinase exhibited the most favorable binding affinity, serving as a benchmark 
for comparison. Similar to other known glucokinase activators, α-muurolene, 
trans-squalene, and (-)-calamenene displayed significant hydrophobic 
interactions with the protein. These compounds demonstrated potential as drug 
candidates based on their predicted binding modes, as visualized in Figure 3. 
Table 6. List of Phytochemical Compounds in PubChem (without HMDB) and HMDB 
(with HMDB) 

Ligand Hydrogen Bonding Hydrophobic 
Interactions 

Other Bonds 

Alpha-muurolene - Pro66, Pro66 
(alkyl), Pro66, 

Tyr214, Tyr214 (pi-
orbital) 

- 

-(-calamenene) - Trp99, Trp 99 (pi-pi 
stacked), Val101, 

Lys90, Val101 
(alkyl), Trp99, 

Trp99, Trp99, Trp99 
(pi-orbital) 

- 

Trans squalene - Pro66, Pro66, 
Pro66, Met210, 
Met235(alkyl), 

Tyr214, Tyr214, 
Tyr214 (pi-alkyl) 

- 

Native ligand Arg63 (konvensional), 
Pro66 (C-H) 

Ile211, Val455 (pi-
sigma), Tyr214 (pi-

pi T-shaped), 
Arg63, Ile159, 
Val455 (alkyl), 
Met236, Pro66, 

Val62, Val452 (pi-

Met210 (pi-sulfur) 
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alkyl) 

 
 

 
 

(a) 
(b) 
 

  

(c) 
(d) 
 

 
Figure 3. Binding mode visualization of (a) Interaction between human glucokinase 
protein and the chemical compound α-muurolene; (b) Interaction between human 
glucokinase protein and the chemical compound trans-squalene; (c) Interaction between 
human glucokinase protein and the native ligand; (d) Interaction between human 
glucokinase protein and the chemical compound (-)-calamenene. 
 

Docking simulations between the identified compounds and human 
glucokinase revealed that α-muurolene, (-)-calamenene, and trans-squalene 
primarily formed hydrophobic interactions within the protein's active site. Figure 
3a illustrates the interaction between α-muurolene and glucokinase, 
characterized by a binding energy of -7.9 kcal/mol and two π-alkyl interactions 
involving residues Pro66 and Tyr214. Similarly, trans-squalene exhibited a 
binding energy of -7.9 kcal/mol with a single π-alkyl interaction (Figure 3b). In 
contrast, the native ligand displayed a stronger binding affinity of -8.8 kcal/mol, 
forming four distinct interaction types: π-sigma, π-π T-shaped, alkyl, and 
hydrogen bonding (Figure 3c). Notably, the native ligand engaged with all active 
site residues. The (-)-calamenene ligand formed a binding complex with a binding 
energy of -8.3 kcal/mol, characterized by stacked π-π, alkyl, and π-orbital 
interactions with specific amino acid residues. Analysis of all docked compounds 
revealed a common motif of π-alkyl interactions involving Lys169 and Ile225. The 
presence of π-sigma interactions, including π-alkyl and π-sulfur subtypes, 
suggests potential charge transfer contributions to ligand binding35. These 
findings corroborate previous observations regarding the diverse chemical 
interactions of ligands compared to activators, emphasizing the importance of 
hydrogen bonding for protein stability and ligand affinity36. 
 

CONCLUSION 
GC-MS analysis of Javan olive (Olea javanica) leaf extract identified a 

complex mixture of compounds, including 3-methylpentane, hexane, 
methylcyclopentane, α-muurolene, (-)-calamenene, methyl 14-
methylpentadecanoate, methyl linoleate, trans-squalene, and α-tocopherol. In 
silico docking studies revealed that the compounds α-tocopherol, trans-squalene, 
(-)-calamenene, and the native ligand have properties that can activate 
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glucokinase to stimulate insulin production by binding to the target protein. 
However, the native ligand exhibits superior binding affinity due to its interaction 
with several amino acid residues within the active site of the protein. To 
substantiate these findings and advance the development of native ligand-based 
antidiabetic therapies, further in vitro, in vivo, and clinical studies are needed. 
These studies are expected to shed light on the therapeutic potential of O. 
javanica leaf extracts and pave the way for the discovery of new antidiabetic 
agents with different mechanisms of action. 
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