Modulation of severe acute respiratory syndrome coronavirus (SARS-CoV-2) in receptor, innate immunity and drug antiviral candidate

Main Article Content

Indra Lasmana Tarigan Kartika Arum

Abstract

The Coronavirus disease-19 (COVID-19) is a contagious acute respiratory infectious disease caused by SARS-CoV-2 as a global pandemic in 2020.  This disease most spreads and causes some severe cases, even death in the world. The primary purpose of this review discusses the recent article that was published regarding COVID-19 genomic modulation, the mechanism of innate immunity, and the screening of anti-viral drug candidates, for treating COVID-19 patients. This review used the latest paper regarding COVID-19 with 63 journals with high impact factors such as Nature, The Lancet, Cells, International Journal of Biological Sciences, Mol Biol Methods. Journal of Microbiology, Immunology, and Infection, Nat. Rev. Microbiol, and other international journals indexed by Scopus, Elsevier, and Springer through in vivo and in vitro studies. The genomic of SARS-CoV-2 consist high similarly to coronaviruses family, albeit possessing a different pathway even has higher affinity, due to changing some nitrogen bases are supposed to have a significant effect on its pneumonia. Herein, we report review article an update on the recent literature of the COVID-19 modulation genome, mechanism of innate immunity, and medical literature. Moreover, we report anti-viral drugs that have been developed from synthetic drugs and medicinal compounds from plants. Several studies have been re-analyzed using in vitro, in vivo, and modelling using bioinformatics tools.

Downloads

Download data is not yet available.

Article Details

How to Cite
Tarigan, I., & Arum, K. (2020). Modulation of severe acute respiratory syndrome coronavirus (SARS-CoV-2) in receptor, innate immunity and drug antiviral candidate. Jurnal Teknologi Laboratorium, 9(1), 1-12. https://doi.org/https://doi.org/10.29238/teknolabjournal.v9i1.214
Section
Special Issues

References

1. Li T, Lu H, Zhang W. Clinical observation and management of COVID-19 patients. 2020;9:0-3. doi: 10.1080/22221751.2020.1741327
2. Adhikari SP, Meng S, Wu Y, et al. Epidemiology, causes, clinical manifestation and diagnosis, prevention and control. Infect Dis Poverty. 2020;9(29):1-12. doi: 10.1186/s40249-020-00646-x
3. Susilo A, Rumende CM, Pitoyo CW, et al. Coronavirus Disease 2019 : Tinjauan Literatur Terkini Coronavirus Disease 2019 : Review of Current Literatures. 2020;7(1):45-67. doi: 10.7454/jpdi.v7i1.415
4. Bleibtreu, A., Bertine, M., Bertin, C., Houhou-Fidouh, N., Visseaux B. Focus on Middle East Repiratory Syndrome Coronavirus (MERS-CoV). Med Mal Infect. 2019; 50(3): 243–251. doi: 10.1016/j.medmal.2019.10.004
5. Lin L, Lu L, Cao W, Li T. Hypothesis for potential pathogenesis of SARS-CoV-2 infection – a review of immune changes in patients with viral pneumonia. 2020;9 (1): 727–732 doi: 10.1080/22221751.2020.1746199
6. Cui J. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol. 2019;17(March):181-192. doi:10.1038/s41579-018-0118-9
7. Inhibitor P, Hoffmann M, Kleine-weber H, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Article SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. 2020:271-280. doi:10.1016/j.cell.2020.02.052
8. Zhou P, Yang X Lou, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270-273. doi:10.1038/s41586-020-2012-7
9. Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395(10223):507-513. doi:10.1016/S0140-6736(20)30211-7
10. Zhang L, Liu Y. Potential interventions for novel coronavirus in China : A systematic review. 2020;(February):479-490. doi:10.1002/jmv.25707
11. Zhang, T., Wu, Q., Zhang, Z. Probable Panglion Origin of SARS-CoV-2 Associated with the COVID-19 Outbreak. Current Biology. 2020; 3:1-6. doi: 10.1016/j.cub.2020.03.022
12. Huang C, Wang Y, Li X, et al. Articles Clinical features of patients infected with 2019 novel coronavirus in Wuhan , China. 2020:497-506. doi:10.1016/S0140-6736(20)30183-5
13. Coutard B, Valle C, Lamballerie X De, Canard B, Seidah NG, Decroly E. The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin like cleavage site absent in CoV of the same clade. 2020;(January). doi: 10.1016/j.antiviral.2020.104742
14. Xiang JZ, Cao DY, Yang YYY. Clinical characteristics of 140 patients infected with SARS- CoV-2 in Wuhan , China. 2020;(February). doi:10.1111/all.14238
15. Li X, Geng M, Peng Y, Meng L, Lu S. Molecular immune pathogenesis and diagnosis of COVID-19. J Pharm Anal. 2020;10(2):102-108. doi:10.1016/j.jpha.2020.03.001
16. Al-Rabiaah, A., Temsah, M.H., Al-Eyadhy, A.A., et al. Middle East Respiratory Syndrome-Corona Virus (MERS-CoV) associated stress among medical students at a university teaching hospital in Saudi Arabia. Journal of Infection and Public Health. 2020; 13(5):687-691. doi: 10.1016/j.jiph.2020.01.005
17. Tao Z, Tian J, Pei Y, Yuan M, Zhang Y, Dai F. A new coronavirus associated with human respiratory disease in China. 2020;579(March): 265–269. doi:10.1038/s41586-020-2008-3
18. N. Chen, M. Zhou, X. Dong, J. Qu, F. Gong, Y. Han, et al., Epidemiological and
clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan,China: a descriptive study. The Lancet. 2020; 395:507–513. doi: 10.1016/S0140-6736(20)30211-7
19. Rothan, H. S., Byraraeddy. Review article: The epidemiology ant Pathogenesis of Coronavirus disease (COVID-19). Journal of Autoimmunity. 2020; 109:1-4. doi: 10.1016/j.jaut.2020.102433
20. Rabi FA, Al Zoubi MS, Al-Nasser AD, Kasasbeh GA, Salameh DM. Sars-cov-2 and coronavirus disease 2019: What we know so far. Pathogens. 2020;9(3):1-15. doi:10.3390/pathogens9030231
21. Ma X, Ph D, Wang D, et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. 2020:727-733. doi:10.1056/NEJMoa2001017
22. Lupia T, Scabini S, Pinna SM, Perri G Di, Rosa FG De, Corcione S. Journal of Global Antimicrobial Resistance 2019 novel coronavirus ( 2019-nCoV ) outbreak : A new challenge. Integr Med Res. 2020;21:22-27. doi:10.1016/j.jgar.2020.02.021
23. Wit E De, Doremalen N Van, Falzarano D, Munster VJ. REVIEWS SARS and MERS : recent insights into emerging coronaviruses. Nat Publ Gr. doi:10.1038/nrmicro.2016.81
24. Fehr AR, Perlman S. Chapter 1 Coronaviruses : An Overview of Their Replication and Pathogenesis. 2015;1282(1). doi:10.1007/978-1-4939-2438-7
25. Denis M, Vandeweerd V, Verbeeke R, et al. Information available to support the development of medical countermeasures and interventions against COVID-19. 2020;(May):1-208. doi: 10.5281/zenodo.3765226
26. Zhou Y, Fu B, Zheng X, Wang D. Perspective pathogenic T cells and inflammatory monocytes incite inflammatory storm in severe COVID-19 patients. doi:10.1093/nsr/nwaa041
27. Yuan, Y., Cao, D., Zhang, Y., Ma, J., Qi, J., Wang, Q., Lu, G., Wu, Y., Yan, J., Shi, Y., Zhang, X., Gao, G.F. Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains. Nat. Commun. 2017; 8(1): 1-9. doi: 10.1038/ncomms15092
28. Guo Y-R, Cao Q-D, Hong Z-S, et al. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak – an update on the status. Mil Med Res. 2020;7(1):1-10. doi:10.1186/s40779-020-00240-0
29. Li, H.S., Kuok, D.I.T., Cheung, M.C., et al. Effect of interferon alpha and cyclosporine treatment separately and in combination on Middle East Respiratory Syndrome Coronavirus (MERS-CoV) replication in a human in-vitro and ex-vivo culture model. Antiviral Research. 2018; 155:89-96. doi: 10.1016/j.antiviral.2018.05.007
30. Shi Y, Wang Y, Shao C, Huang J, Gan J, Huang X. COVID-19 infection : the perspectives on immune responses. Cell Death Differ. 2020:1451-1454. doi:10.1038/s41418-020-0530-3
31. Jin Y, Cai L, Cheng Z, et al. A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus ( 2019-nCoV ) infected pneumonia ( standard version ). 2020:1-23. doi: 10.1186/s40779-020-0233-6
32. Habibzadeh P, Stoneman EK. The Novel Coronavirus : A Bird ’ s Eye View. The International Journal of Occupational and Environmental Medicine. 2020;11:65-71. doi:10.15171/ijoem.2020.1921
33. Walls, A. C., Park, Y.-J., Tortorici, M. A., Wall, A., McGuire, A. T., & Veesler, D. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell. 2020; 180: 1–12. doi: 10.1016/j.cell.2020.02.058
34. Xiao F, Tang M, Zheng X, Li C, He J, Hong Z, et al. Evidence for gastrointestinal infection of SARS-CoV-2. Gastroenterology. 2020; 158(6): 1831–1833. doi: 10.1053/j.gastro.2020.02.055
35. Zou H, He T, Chen X. International Immunopharmacology Tetrandrine inhibits di ff erentiation of proin fl ammatory subsets of T helper cells but spares de novo di ff erentiation of iTreg cells. 2019;69(November 2018):307-312. doi:10.1016/j.intimp.2019.01.040
36. Müller C, Schulte FW, Lange-Grünweller K, Obermann W, Madhugiri R, Pleschka S, et al. Broad-spectrum antiviral activity of the eIF4A inhibitor silvestrol against corona- and picornaviruses. Antiviral Res. 2017;150:123–129. doi: 10.1016/j.antiviral.2017.12.010
37. Chen H, Qi S, Shen J. One-Compound-Multi-Target: Combination Prospect of Natural Compounds with Thrombolytic Therapy in Acute Ischemic Stroke. 2017:134-156. doi:10.2174/1570159X14666160620102
38. Al-Ghamdi M, Alghamdi KM, Ghandoora Y, Alzahrani A, Salah F, Alsulami A, et al. Treatment outcomes for patients with Middle Eastern Respiratory Syndrome Coronavirus (MERS CoV) infection at a coronavirus referral center in the Kingdom of Saudi Arabia. BMC Infect Dis. 2016;16:1-7. doi: 10.1186/s12879-016-1492-4
39. Promphetchara, E., Ketloy, C., Palaga, T. Immune responses in COVID-19 and potential vaccines : Lessons learned from SARS and MERS epidemic. Asian Pac J Allergy Immunol. 2020; 38(1),1-9. doi: 10.12932/AP-200220-0772
40. Fu, Y., Cheng, Y., & Wu, Y. Understanding SARS-CoV-2-Mediated Inflammatory Responses: From Mechanisms to Potential Therapeutic Tools. Virologica Sinica. 2020; March:1-6. doi: 10.1007/s12250-020-00207-4
41. Gralinski, L. E., Sheahan, T. P., Morrison, T. E., Menachery, V. D., Jensen, K., Leist, S. R., Baric, R. S. Complement activation contributes to severe acute respiratory syndrome coronavirus pathogenesis. Mol Bio. 2018; 9(5):1–15. doi: 10.1128/mBio.01753-18
42. Sheahan TP, Sims AC, Graham RL, Menachery VD, Gralinski LE, Case JB, et al. Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses. Sci Transl Med. 2017; 9:1-20. doi: 10.1126/scitranslmed.aal3653
43. Al-Tawfiq, J.A., Memish, Z.A.. Update on therapeutic options for Middle East respiratory syndrome coronavirus (MERS-CoV). Expert Rev. Anti. Infect. Ther. 2017; 15(3):269–275. doi: 10.1080/14787210.2017.1271712
44. Holshue ML, DeBolt C, Lindquist S, Lofy KH, Wiesman J, Bruce H, et al. First Case of 2019 Novel Coronavirus in the United States. The New England journal of medicine. 2020; 382:929-936. doi: 10.1056/NEJMoa2001191
45. Gupta, A. & Gulati, S. Mesalamine induced eosinophilic pneumonia. Respir. Med. Case Rep. 2017; 21: 116–117. doi: 10.1016/j.rmcr.2017.04.010
46. Pillaiyar T, Manickam M, Namasivayam V, Hayashi Y, Jung SH. An overview of severe acute respiratory syndrome-coronavirus (SARS-CoV) 3CL protease inhibitors: peptidomimetics and small molecule chemotherapy. J Med Chem. 2016; 59:6595-628. doi: 10.1016/j.rmcr.2017.04.010
47. Arabi YM, Mandourah, Y., Al-Hameed F, Sindi AA, Al Mekhlafi GA, Hussein MA, et al. Corticosteroid Therapy for Critically Ill Patients with the Middle East Respiratory Syndrome. Am J Respir Crit Care Med. 2018;197(6):757-767. doi: 10.1164/rccm.201706-1172OC
48. Colson, P., Rolain, J.M., Lagier, J.C., Brouqui, P., Roult, D. 2020. Chloroquine and Hydroxychloroquine as Available weapon to fight COVID 19. International Journal of Antimicrobial Agents. 2020; 55(4):1-3. doi: 10.1016/j.ijantimicag.2020.105932
49. De Clercq E. New Nucleoside Analogues for the Treatment of Hemorrhagic Fever Virus Infections. Chem Asian J. 2019; 14(22):3962-3968. doi: 10.1002/asia.201900841
50. Ishfaq, M., Chen, C., Bao, J., Zhang, W., Wu, Z., Wang, J., Liu, Y., Tian, E., Hamid, S., Li, R., Ding, L., Li, J., 2019. Baicalin ameliorates oxidative stress and apoptosis by restoring mitochondrial dynamics in the spleen of chickens via the opposite modulation of NF-kappaB and Nrf2/HO-1 signaling pathway during Mycoplasma gallisepticum infection. Poult Sci. 2019; 98(12): 6296-6310. doi: 10.3382/ps/pez406
51. Jordan PC, Stevens SK, Deval J. Nucleosides for the treatment of respiratory RNA virus infections. Antivir Chem Chemother. 2018; 26:1-19. doi: 10.1177/2040206618764483
52. Keyaerts E, Vijgen L, Maes P, Neyts J, Van Ranst M. In vitro inhibition of severeacute respiratory syndrome coronavirus by chloroquine. Biochem Biophys Res Commun; 2004; 323(1):264–268. doi: 10.1016/j.bbrc.2004.08.085
53. Robson, B. 2020. Computers and Viral diseases. Preliminary bioinformatics studies on the design of a synthetic vaccine and a preventative peptidomimetic antagonist agains the SARS-CoV-2 (2019-nCoV, COVID-2019) Coronavirus. Computers in Biology and Medicine. 2020; April:1-19. doi: 10.1016/j.compbiomed.2020.103670
54. Rossignol J-F. Nitazoxanide, a new drug candidate for the treatment of Middle East respiratory syndrome coronavirus. J Infect Pub Health. 2016; 9(3):227–230. doi: 10.1016/j.jiph.2016.04.001
55. Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020; 30:269-271.doi: 10.1053/j.gastro.2020.02.055.
56. Zhou, Y., Hou, Y., Shen, J., Huang, Y., Martin, W., Cheng, F. Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2. Cell Discovery, Nature. 2020; 6: 1-18. doi: 10.1038/s41421-020-0153-3
57. Kim DE, Min JS, Jang MS, Lee JY, Shin YS, Song JH, et al. Natural Bis-Benzylisoquinoline Alkaloids-Tetrandrine, Fangchinoline, and Cepharanthine, Inhibit Human Coronavirus OC43 Infection of MRC-5 Human Lung Cells. Biomolecules. 2019; 9(11): 696. doi: 10.3390/biom9110696
58. Muller, C. et al. Broad-spectrum antiviral activity of the eIF4A inhibitor silvestrol against corona- and picornaviruses. Antivir. Res. 2018;150:123–129. doi: 10.1016/j.antiviral.2017.12.010
59. Yang, Y., Islam, M. S., Wang,J., Li, Y., Chen, X. Traditional Chinese Medicine in the Treatment of Patients Infected with 2019-New Coronavirus (SARS-CoV-2): A Review and Perspective. Int. Jou. Of Bio. Sci. 2020; 16(10):1709-1716. doi: 10.7150/ijbs.45538
60. Shereen, M.A., Khan, S., Kazmi. A., Bashir, N., Siddique, R. COVID-19 infection: Origin, transmission, and characteristics of human coronavirus. Journal of Advance Research. 2020; 24:91-98. doi: 10.1016/j.jare.2020.03.005
61. Turista, D. D.R., Islamy, A., Kharisma, V. D.K., Anshori, A.N.M. Distribution of COVID-19 and Phylogenetic Tree Construction of SARS-CoV-2 in Indonesia. J.Pure Appl. Microbiol. 2020; 14 (suppl 1):1035-1042. doi: 10.22207/JPAM.14.SPL1.42