3443
Abstract Views
1724
PDF Download
Special Issues

Human immune response to SARS-CoV-2 infection

, ,
Pages 29-40

Abstract

COVID-19 is an acute respiratory infection caused by a new type of Coronavirus, SARS-CoV-2, which first appeared in Wuhan, China in December 2019. COVID-19 then became a pandemic in various countries in early 2020. In this article it contains review that discusses the immune response in humans due to SARS-CoV-2 infection, using the narrative literature review method, a total of 36 articles (6 from Elsevier, 24 from PMC, and 6 from Springer). It is known that the pathogenesis of COVID-19 and the manufacture of drugs and vaccines are still under investigation, but in infected patients, innate immune responses in the form of alveolar macrophages, dendritic cells, airway epithelial cells, congenital lymphocytes, and neutrophils work together in the fight against infection. Next comes the adaptive immune response in the form of antibodies (immunoglobulins) which help in fighting infections due to SARS-CoV-2. These immune responses include increasing levels of cytokines, coagulation parameters, C-reactive protein, neutrophils, and decreasing total lymphocytes. It is also known that COVID-19 patients with severe disease often experience higher total antibody, IgM responses, and IgG responses than COVID-19 patients without congenital disease. IgG antibodies are present in the serum, so the serum in COVID-19 patients who have recovered can be used for therapy in COVID-19 patients who have not healed, as long as the drug and vaccine are under investigation.

There is no Figure or data content available for this article

References

1. Zhou F, Yu T, Du R, et al. Clinical Course and Risk Factors for Mortality of Adult Inpatients with COVID-19 in Wuhan, China: a Retrospective Cohort Study. Lancet. 2020;395(10229):1054–1062. doi:10.1016/S0140-6736(20)30566-3.
2. Dong E, Du H, Gardner L. An Interactive Web-Based Dashboard to Track COVID-19 in Real Time. Lancet Infect Dis. 2020;3099(20):19–20. doi:10.1016/S1473-3099(20)30120-1.
3. Zou L, Ruan F, Huang M, et al. SARS-CoV-2 Viral Load in Upper Respiratory Specimens of Infected Patients. N Engl J Med. 2020;382(12):1177–1179. doi:10.1056/NEJMc2001737.
4. Tay MZ, Poh CM, Rénia L, MacAry PA, Ng LFP. The Trinity of COVID-19: Immunity, Inflammation and Intervention. Nat Rev Immunol. 2020:1–12. doi:10.1038/s41577-020-0311-8.
5. WHO. Coronavirus Disease 2019 (COVID-19) Situation Report - 101.; 2020. Available at: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports.
6. KEMENKES. Situasi COVID-19. Indonesia; 2020. Available at: https://www.kemkes.go.id/.
7. Turista DDR, Islamy A, Kharisma VD, Ansori ANM. Distribution of COVID-19 and Phylogenetic Tree Construction of SARS-CoV-2 in Indonesia. J Pure Appl Microbiol. 2020;14(suppl 1):1035–1042. doi:10.22207/JPAM.14.SPL1.42.
8. Shereen MA, Khan S, Kazmi A, Bashir N, Siddique R. COVID-19 Infection: Origin, Transmission, and Characteristics of Human Coronaviruses. J Adv Res. 2020;24:91–98. doi:10.1016/j.jare.2020.03.005.
9. WHO. Pertanyaan dan Jawaban Terkait Coronavirus. who.int/indonesia. 2020. Available at: https://www.who.int/indonesia/news/novel-coronavirus/qa-for-public. Accessed April 7, 2020.
10. Burhan E, Isbaniah F, Susanto A, et al. Pneumonia Covid-19: Diagnosis & Penatalaksanaan di Indonesia. 1st ed. Jakartra: Perhimpunan Dokter Paru indonesia; 2020.
11. Xie M, Chen Q. Insight into 2019 Novel Coronavirus - an Updated Intrim Review and Lessons from SARS-CoV and MERS-CoV. Int J Infect Dis. 2020. doi:10.1016/j.ijid.2020.03.071.
12. Prompetchara E, Ketloy C, Palaga T. Immune Responses in COVID-19 and Potential Vaccines: Lessons Learned from SARS and MERS epidemic. Asian Pacific J allergy Immunol. 2020. doi:10.12932/AP-200220-0772.
13. Zu ZY, Jiang MD, Xu PP, et al. Coronavirus Disease 2019 (COVID-19): A Perspective from China. Radiology. 2020. doi:10.1148/radiol.2020200490.
14. Wan Y, Shang J, Graham R, Baric RS, Li F. Receptor Recognition by the Novel Coronavirus from Wuhan: an Analysis Based on Decade-Long Structural Studies of SARS Coronavirus. J Virol. 2020;94(7):1–9. doi:10.1128/JVI.00127-20.
15. Susilo A, Rumende CM, Pitoyo CW, et al. Coronavirus Disease 2019 : Tinjauan Literatur Terkini Coronavirus Disease 2019 : Review of Current Literatures. J Penyakit Dalam Indones. 2020;7(1):45–67. doi:10.7454/jpdi.v7i1.415.
16. Zhou P, Yang X Lou, Wang XG, et al. A Pneumonia Outbreak Associated with A New Coronavirus of Probable Bat Origin. Nature. 2020;579(7798):270–273. doi:10.1038/s41586-020-2012-7.
17. Lau F, Kuziemsky C. Handbook of eHealth Evaluation: An Evidence-based Approach. 3rd ed. (Kuziemsky C, ed.). Victoria, Canada: University of Victoria; 2016. Available at: https://www.ncbi.nlm.nih.gov/books/NBK481590/pdf/Bookshelf_NBK481590.pdf.
18. Gabriella M, Cristina S, Concetta R, Francesco R, Annalisa C. SARS-CoV-2 Infection: Response of Human Immune System and Possible Implications for The Rapid Test and Treatment. Int Immunopharmacol. 2020;84. doi:10.1016/j.intimp.2020.106519.
19. Ansori ANM, Kharisma VD, Muttaqin SS, Antonius Y, Parikesit AA. Genetic Variant of SARS-CoV-2 Isolates in Indonesia: Spike Glycoprotein Gene. 2020;14(suppl 1):971–978. doi:10.22207/JPAM.14.SPL1.35.
20. Li X, Geng M, Peng Y, Meng L, Lu S. Molecular Immune Pathogenesis and Diagnosis of COVID-19. J Pharm Anal. 2020. doi:10.1016/j.jpha.2020.03.001.
21. Bosch BJ, Zee R van der, Haan CAM de, Rottier PJM. The Coronavirus Spike Protein Is a Class I Virus Fusion Protein: Structural and Functional Characterization of the Fusion Core Complex. 2003;77(16):8801–8811. doi:10.1128/JVI.77.16.8801–8811.2003.
22. Wang X, Xu W, Hu G, et al. SARS-CoV-2 Infects T Lymphocytes Through its Spike Protein-Mediated Membrane Fusion. Cell Mol Immunol. 2020:2–4. doi:10.1038/s41423-020-0424-9.
23. Ortega JT, Serrano ML, Pujol FH, Rangel HR. Role of Changes in SARS-CoV-2 Spike Protein in The Interaction with The Human ACE2 Receptor: An in Silico Analysis. EXCLI J. 2020;(19):410–417. doi:10.17179/excli2020-1167.
24. Schoeman D, Fielding BC. Coronavirus Envelope Protein: Current Knowledge. Virol J. 2019;16(69):1–22. doi:10.1186/s12985-019-1182-0.
25. Zeng Q, Langereis MA, Van Vliet ALW, Huizinga EG, De Groot RJ. Structure of Coronavirus Hemagglutinin-esterase Offers Insight into Corona and Influenza Virus Evolution. Proc Natl Acad Sci U S A. 2008;105(26):9065–9069. doi:10.1073/pnas.0800502105.
26. Muriaux D, Darlix JL. Properties and Functions of The Nucleocapsid Protein in Virus Assembly. RNA Biol. 2010;7(6):744–753. doi:10.4161/rna.7.6.14065.
27. Poltronieri P, Sun B, Mallardo M. RNA Viruses: RNA Roles in Pathogenesis, Coreplication and Viral Load. Curr Genomics. 2015;16(5):327–335. doi:10.2174/1389202916666150707160613.
28. Malik YA. Properties of Coronavirus and SARS-CoV-2. Malays J Pathol. 2020;42(1):3–11. Available at: https://pubmed.ncbi.nlm.nih.gov/32342926/?from_term=single+rna+sars-cov-2&from_pos=3.
29. Huang IC, Bosch BJ, Li F, et al. SARS Coronavirus, but Not Human Coronavirus NL63, Utilizes Cathepsin L to Infect ACE2-Expressing Cells. J Biol Chem. 2006;281(6):3198–3203. doi:10.1074/jbc.M508381200.
30. Imai Y, Kuba K, Rao S, et al. Angiotensin-Converting Enzyme 2 Protects from Severe Acute Lung Failure. Nature. 2005;436(7):112–116. doi:10.1038/nature03712.
31. Farmasi UGM. Mengenal Reseptor ACE2, “Pintu Masuk” Virus Covid-19. Fak Farm Univ Gajah Mada. 2020. Available at: https://farmasi.ugm.ac.id/id/mengenal-reseptor-ace2-pintu-masuk-virus-covid-19. Accessed June 14, 2020.
32. Callaway E. The Race for Coronavirus Vaccines: a Graphical Guide. Nature. 2020;580(7805):576–577. doi:10.1038/d41586-020-01221-y.
33. Irma L., Syamsudin, Wibawan IW. Ekstrak Propolis sebagai Imunomodulator. J Ilmu Kefarmasian Indones. 2006;4(1):15–18. Available at: http://jifi.farmasi.univpancasila.ac.id/index.php/jifi/article/view/599.
34. Kaye M, Druce J, Tran T, et al. SARS-Associated Coronavirus Replication in Cell Lines. Emerg Infect Dis. 2006;12(1):128–133. doi:10.3201/eid1201.050496.
35. Rohmana Q. Kontrol Genetik Respon Imun. Wordpress.com. 2016. Available at: https://aulyarohmana16.wordpress.com/2016/05/03/kontrol-genetik-respon-imun/. Accessed April 30, 2020.
36. Agustina W. Respon Imun Pada Penderita Asma Selama Kehamilan. J Ilmu Kesehat. 2015;4(1). doi:10.32831/jik.v4i1.75.
37. Fatmah. Respons Imunitas yang Rendah pada Tubuh Manusia Usia Lanjut. Makara Kesehat J UI. 2006;10(1):47–53. doi:10.7454/msk.v10i1.169.
38. Turvey SE, Broide DH. Innate Immunity. J Allergy Clin Immunol. 2010;125(2):S24–S32. doi:10.1016/j.jaci.2009.07.016.
39. Stewart J. Innate and Acquired Immunity. Med Microbiol Eighteenth Ed. 2012:109–135. doi:10.1016/B978-0-7020-4089-4.00024-X.
40. Supatmo Y, Susanto H, Sugiharto. Pengaruh Latihan Terhadap Jumlah Sel Natural Killer (NK) Sebagai Indikator Kekebalan Tubuh Latihan. J Media Ilmu Keolahragaan Indones. 2015;5(1). doi:10.15294/miki.v5i2.7883.
41. Indriani M. Pengaruh Konsentrasi pH Buffer Giemsa terhadap Morfologi Leukosit pada Preparat Sumsung Tulang. 2017. Available at: http://repository.unimus.ac.id/1214/.
42. Cruvinel WM, Júnior DM, Araújo JAP, et al. Immune System - Part I: Fundamentals of Innate Immunity with Emphasis on Molecular and Cellular Mechanisms of Inflammatory Response. Rev Bras Reumatol. 2010;50(4):443–461. doi:10.1590/S0482-50042010000400008.
43. Clark R, Kupper T. Old Meets New: The Interaction Between Innate and Adaptive Immunity. J Invest Dermatol. 2005;125(4):629–637. doi:10.1111/j.0022-202X.2005.23856.x.
44. Abbas. Sel Dendritik. Wordpress.com. 2012. Available at: https://genome4.wordpress.com/2012/01/26/sel-dendritik/. Accessed June 12, 2020.
45. Ukhrowi U. Pengaruh Pemberian Ekstrak Etanol Umbi Bidara Upas (Merremia mammosa) Terhadap Fagositosis Makrofag dan Produksi Nitrit Oksida (NO) Makrofag Studi pada Mencit Balb/c yang Diinfeksi Salmonella typhimurium. 2011. Available at: http://eprints.undip.ac.id/33870/.
46. Tamam B. Pengertian, Macam, dan Fungsi Sistem Komplemen, Penjelasan Lengkap. Gener Biol. 2017. Available at: https://www.generasibiologi.com/2017/06/pengertian-macam-fungsi-sistem-komplemen.html. Accessed June 14, 2020.
47. Bahar AA, Ren D. Antimicrobial Peptides. Pharmaceuticals. 2013;6:1543–1575. doi:10.3390/ph6121543.
48. Gutsmann T, Muller M, Carroll SF, Mackenzie R, Wiese A, Seydel U. Dual Role of Lipopolysaccharide ( LPS ) -Binding Protein in Neutralization of LPS and Enhancement of LPS-Induced Activation of Mononuclear Cells. Am Soc Microbiol. 2001;69(11):6942–6950. doi:10.1128/IAI.69.11.6942.
49. Sproston NR, Ashworth JJ. Role of C-Reactive Protein at Sites of Inflammation and Infection. Front Immunol. 2018;9:1–11. doi:10.3389/fimmu.2018.00754.
50. Kikkert M. Innate Immune Evasion by Human Respiratory RNA Viruses. J Innate Immun. 2020;12(1):4–20. doi:10.1159/000503030.
51. Li G, Fan Y, Lai Y, et al. Coronavirus Infections and Immune Responses. J Med Virol. 2020;92(4):424–432. doi:10.1002/jmv.25685.
52. Lin L, Lu L, Cao W, Li T. Hypothesis for Potential Pathogenesis of SARS-CoV-2 Infection - A Review of Immune Changes in Patients with Viral Pneumonia. Emerg Microbes Infect. 2020;9(1):727–732. doi:10.1080/22221751.2020.1746199.
53. Paramitha DS, Dharmana E. Pengaruh Pemberian Tiga Jenis Kombinasi Herbal A, B dan C Terhadap Kapasitas Produksi Interferon Gamma (IFN-γ) dan Interleukin 4 (IL-4) pada Mencit Bal B/C. 2014. Available at: http://eprints.undip.ac.id/44549/.
54. Cao X. COVID-19: Immunopathology and Its Implications for Therapy. Nat Rev Immunol. 2020. doi:10.1038/s41577-020-0308-3.
55. Qin C, Zhou L, Hu Z, et al. Dysregulation of Immune Response in Patients with COVID-19 in Wuhan, China. Oxford Univ Press Infect Dis Soc Am. 2020:2–24. doi:10.1093/cid/ciaa248.
56. Zhao J, Yuan Q, Wang H, et al. Antibody Responses to SARS-CoV-2 in Patients of Novel Coronavirus Disease 2019. Infect Dis Soc Am. 2020:1–22. doi:10.1093/cid/ciaa344.
57. Cristiani L, Mancino E, Matera L, Nenna R, Pierangeli A, Midulla F. Early View Will children reveal their secret ? The coronavirus dilemma. 2020. doi:10.1183/13993003.00749-2020.
58. Mahfudloh L. Perubahan Imunoglobulin (IgG) dan Imunoglobulin A (IgA) Qori Penghafal Al-Qur’an di Yayasan Baitul Qur'an Indonesia - Depok. 2010. Available at: http://repository.uinjkt.ac.id/dspace/handle/123456789/2109.
59. IC. Mekanisme Pertahanan Tubuh Terhadap Virus. Child Allergy Cent Inf Educ Netw. 2010. Available at: https://childrenallergyclinic.wordpress.com/2010/10/17/mekanisme-pertahanan-tubuh-terhadap-virus/. Accessed June 14, 2020.
60. Shen C, Wang Z, Zhao F, et al. Treatment of 5 Critically Ill Patients With COVID-19 with Convalescent Plasma. 2020;323(16):1582–1589. doi:10.1001/jama.2020.4783.
61. Ye M, Fu D, Ren Y, et al. Treatment with convalescent plasma for COVID-19 patients in Wuhan, China. 2020:0–1. doi:10.1002/jmv.25882.
62. Pachetti M, Marini B, Benedetti F, et al. Emerging SARS‑CoV‑2 Mutation Hot Spots Include a Novel RNA‑dependent‑RNA Polymerase Variant. J Transl Med. 2020;18(179):1–9. doi:10.1186/s12967-020-02344-6.
63. Deng X, John ES, Osswald HL, et al. Coronaviruses Resistant to A 3C-Like Protease Inhibitor Are Attenuated for Replication and Pathogenesis , Revealing A Low Genetic Barrier but High Fitness Cost of Resistance. 2014;88(20):11886–11898. doi:10.1128/JVI.01528-14.
64. Purwaningsih E. Disfungsi Telomer pada Penyakit Autoimun. J Kedokt Yars. 2013;21(1):41–49. Available at: https://media.neliti.com/media/publications/105976-ID-disfungsi-telomer-pada-penyakit-autoimun.pdf.
There is no Supplemental content for this article.

How to Cite This

Wina Nurtias, L. Y., Rahma Turista, D. D., & Puspitasari, E. (2020). Human immune response to SARS-CoV-2 infection. Jurnal Teknologi Laboratorium, 9(1), 29–40. https://doi.org/10.29238/teknolabjournal.v9i1.223

Article Metrics

Download Statistics

Downloads

Download data is not yet available.

Other Statistics

Verify authenticity via CrossMark

Copyright and Permissions

Publishing your paper with Jurnal Teknologi Laboratorium (JTL) means that the author or authors retain the copyright in the paper. JTL granted an exclusive reuse license by the author(s), but the author(s) are able to put the paper onto a website, distribute it to colleagues, give it to students, use it in your thesis etc, even commercially. The author(s) can reuse the figures and tables and other information contained in their paper published by JTL in future papers or work without having to ask anyone for permission, provided that the figures, tables or other information that is included in the new paper or work properly references the published paper as the source of the figures, tables or other information, and the new paper or work is not direct at private monetary gain or commercial advantage.

JTL journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge. This journal is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. This license lets others remix, transform, and build upon the material for any purpose, even commercially.

JTL journal Open Access articles are distributed under this Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA). Articles can be read and shared for All purposes under the following conditions:

  • BY: You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • SA:  If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.

Data Availability