Indirect exposure to novel coronavirus (SARS-CoV-2): an overview of current knowledge

Main Article Content

Christian Ebere Enyoh Andrew Wirnkor Verla Wang Qingyue Dipak Kumar Yadav Md Akhter Hossain Chowdhury Beniah Obinna Isiuku Tanzin Chowdhury Francis Chizoruo Ibe Evelyn Ngozi Verla Tochukwu Oluwatosin Maduka

Abstract

This review chronicles the indirect transmission method which seems to be overlooked by most people and makes attempts to document the various transmission ways with a hope that such information may strengthen the knowledge base of researchers towards methods of eradicating the pandemic. Current knowledge of transmission and exposure of SARS-CoV-2 has been explained. Various researchers have put forward different ways of exposure and transmission.  Literature does not reveal whether the indirect transmission route is the dominant one. However, total lockdown could be a veritable means to reduce both direct and indirect transmission routes. In many countries where the indirect transmission has been reduced, the scourge of the virus is less. The work creates awareness on the need to watch out for those routes of transmissions that may not be popular and suggested vital knowledge gaps that need to fill.

 

Downloads

Download data is not yet available.

Article Details

How to Cite
Enyoh, C., Wirnkor Verla, A., Qingyue, W., Kumar Yadav, D., Akhter Hossain Chowdhury, M., Obinna Isiuku, B., Chowdhury, T., Chizoruo Ibe, F., Ngozi Verla, E., & Oluwatosin Maduka, T. (2020). Indirect exposure to novel coronavirus (SARS-CoV-2): an overview of current knowledge. Jurnal Teknologi Laboratorium, 9(1), 67 - 77. https://doi.org/https://doi.org/10.29238/teknolabjournal.v9i1.227
Section
Special Issues

References

1. Worldometer. Coronavirus.
2. J L, B D, P D. Corona virus: A visual guide to the economic impact. BBC News.
3. Enyoh CE, Verla AW, Verla EN. Novel Coronavirus (SARS-CoV-2) and Airborne Microplastics. medRxiv. April 2020. doi:10.5281/ZENODO.3738452
4. Tang A, Tong Z, Wang H, et al. Detection of Novel Coronavirus by RT-PCR in Stool Specimen from Asymptomatic Child, China. Emerg Infect Dis. 2020;26(6):1337-1339. doi:10.3201/eid2606.200301
5. Zhang N, Gong Y, Meng F, Bi Y, Yang P, Wang F. Virus shedding patterns in nasopharyngeal and fecal specimens of COVID-19 patients. medRxiv. 2020:2020.03.28.20043059. doi:10.1101/2020.03.28.20043059
6. Ahmed W, Angel N, Edson J, et al. First confirmed detection of SARS-CoV-2 in untreated wastewater in Australia: A proof of concept for the wastewater surveillance of COVID-19 in the community. Sci Total Environ. 2020;728:138764. doi:10.1016/j.scitotenv.2020.138764
7. Gao J, Tian Z, Yang X. Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci Trends. 2020;14(1):72-73. doi:10.5582/bst.2020.01047
8. Holshue ML, DeBolt C, Lindquist S, et al. First Case of 2019 Novel Coronavirus in the United States. N Engl J Med. 2020;382(10):929-936. doi:10.1056/NEJMoa2001191
9. Jiehao C, Jin X, Daojiong L, et al. A Case Series of Children With 2019 Novel Coronavirus Infection: Clinical and Epidemiological Features. Clin Infect Dis. February 2020. doi:10.1093/cid/ciaa198
10. Wölfel R, Corman VM, Guggemos W, et al. Virological assessment of hospitalized patients with COVID-2019. Nature. 2020;581(7809):465-469. doi:10.1038/s41586-020-2196-x
11. FQ W, A X, JB Z, et al. SARS-CoV-2 titers in wastewater are higher than expected from clinically confirmed cases. medRxiv. 2020;21(1):1-9. doi:10.1101/2020.04.05.20051540
12. Santarpia JL, Rivera DN, Herrera V, et al. Transmission Potential of SARS-CoV-2 in Viral Shedding Observed at the University of Nebraska Medical Center. medRxiv. 2020:2020.03.23.20039446. doi:10.1101/2020.03.23.20039446
13. Yadav DK, Shah PK, Enyoh CE. Paper-Based Record File of Patients Could Be a Fomite for SARS- CoV-2 Transmission in Hospital Setting of Low- and Middle-Income Countries ( LMICs ).; 2000. doi:10.5281/zenodo.3832164
14. Chan JF-W, Yuan S, Kok K-H, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet. 2020;395(10223):514-523. doi:10.1016/S0140-6736(20)30154-9
15. Kampf G, Todt D, Pfaender S, Steinmann E. Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. J Hosp Infect. 2020;104(3):246-251. doi:10.1016/j.jhin.2020.01.022
16. Moriarty LF, Plucinski MM, Marston BJ, et al. Public health responses to COVID-19 outbreaks on cruise ships. Morb Mortal Wkly Rep. 2020;69(12):347-352. doi:10.15585/MMWR.MM6912E3
17. Guo Z-D, Wang Z-Y, Zhang S-F, et al. Aerosol and Surface Distribution of Severe Acute Respiratory Syndrome Coronavirus 2 in Hospital Wards, Wuhan, China, 2020. Emerg Infect Dis. 2020;26(7):1583-1591. doi:10.3201/eid2607.200885
18. Colaneri M, Seminari E, Novati S, et al. Severe acute respiratory syndrome coronavirus 2 RNA contamination of inanimate surfaces and virus viability in a health care emergency unit. Clin Microbiol Infect. May 2020. doi:10.1016/j.cmi.2020.05.009
19. Ong SWX, Tan YK, Chia PY, et al. Air, Surface Environmental, and Personal Protective Equipment Contamination by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) From a Symptomatic Patient. JAMA. 2020;323(16):1610. doi:10.1001/jama.2020.3227
20. World Health Organization. Consensus document on the epidemiology of severe acute respiratory syndrome (SARS). Consens Doc Epidemiol Sev acute Respir Syndr. 2003:1-47. https://www.who.int/csr/sars/en/WHOconsensus.pdf.
21. Wang W, Xu Y, Gao R, et al. Detection of SARS-CoV-2 in Different Types of Clinical Specimens. JAMA. March 2020. doi:10.1001/jama.2020.3786
22. Wu Y, Guo C, Tang L, et al. Prolonged presence of SARS-CoV-2 viral RNA in faecal samples. Lancet Gastroenterol Hepatol. 2020;5(5):434-435. doi:10.1016/S2468-1253(20)30083-2
23. Xiao F, Tang M, Zheng X, Liu Y, Li X, Shan H. Evidence for Gastrointestinal Infection of SARS-CoV-2. Gastroenterology. 2020;158(6):1831-1833.e3. doi:10.1053/j.gastro.2020.02.055
24. Xu Y, Li X, Zhu B, et al. Characteristics of pediatric SARS-CoV-2 infection and potential evidence for persistent fecal viral shedding. Nat Med. 2020;26(4):502-505. doi:10.1038/s41591-020-0817-4
25. Peiris J, Chu C, Cheng V, et al. Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: a prospective study. Lancet. 2003;361(9371):1767-1772. doi:10.1016/S0140-6736(03)13412-5
26. Yu ITS, Li Y, Wong TW, et al. Evidence of Airborne Transmission of the Severe Acute Respiratory Syndrome Virus. N Engl J Med. 2004;350(17):1731-1739. doi:10.1056/NEJMoa032867
27. O’Bannon DJ, ed. Women in Water Quality. Cham: Springer International Publishing; 2020. doi:10.1007/978-3-030-17819-2
28. Hellmér M, Paxéus N, Magnius L, et al. Detection of Pathogenic Viruses in Sewage Provided Early Warnings of Hepatitis A Virus and Norovirus Outbreaks. Schaffner DW, ed. Appl Environ Microbiol. 2014;80(21):6771-6781. doi:10.1128/AEM.01981-14
29. Asghar H, Diop OM, Weldegebriel G, et al. Environmental Surveillance for Polioviruses in the Global Polio Eradication Initiative. J Infect Dis. 2014;210(suppl 1):S294-S303. doi:10.1093/infdis/jiu384
30. Medema G, Heijnen L, Elsinga G, Italiaander R, Medema G. Presence of SARS-Coronavirus-2 in sewage . Methods Sewage samples. medRxiv. 2020. doi:https://doi.org/10.1101/2020.03.29.20045880
31. Opara AI, Ibe FC, Njoku PC, Alinnor JI, Enenebeaku CK. Geospatial and Geostatistical Analyses of Particulate Matter (PM10) Concentrations in Imo State, Nigeria. Int Lett Nat Sci. 2016;57:89-107. doi:10.18052/www.scipress.com/ILNS.57.89
32. Ibe FC, Opara AI, Duru CE, Obinna IB, Enedoh MC. Statistical analysis of atmospheric pollutant concentrations in parts of Imo State, Southeastern Nigeria. Sci African. 2020;7:e00237. doi:10.1016/j.sciaf.2019.e00237
33. Enyoh CE, Verla AW, Verla EN, Ibe FC, Amaobi CE. Airborne microplastics: a review study on method for analysis, occurrence, movement and risks. Environ Monit Assess. 2019;191(11):668. doi:10.1007/s10661-019-7842-0
34. Ma Y, Zhao Y, Liu J, et al. Effects of temperature variation and humidity on the death of COVID-19 in Wuhan, China. Sci Total Environ. 2020;724:138226. doi:10.1016/j.scitotenv.2020.138226
35. van Doremalen N, Bushmaker T, Morris DH, et al. Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. N Engl J Med. 2020;382(16):1564-1567. doi:10.1056/NEJMc2004973
36. Dbouk T, Drikakis D. On coughing and airborne droplet transmission to humans. Phys Fluids. 2020;32(5):053310. doi:10.1063/5.0011960
37. Vianello A, Jensen RL, Liu L, Vollertsen J. Simulating human exposure to indoor airborne microplastics using a Breathing Thermal Manikin. Sci Rep. 2019;9(1):8670. doi:10.1038/s41598-019-45054-w