In-vitro antibacterial activity of the seed extract of three-member Artocarpus towards Methicillin-Resistant Staphylococcus aureus (MRSA)

Main Article Content

Muhammad Evy Prastiyanto Inas Hasna Azizah Hafizha Dara Haqi Bagus Dwi Yulianto Aulia Bella Agmala Zhafira Dias Radipasari Nita Ayu Dwi Astuti Arifani Rahma Putri

Abstract

Methicillin-Resistant Staphylococcus aureus (MRSA) infections have created a critical need for the development of natural antibacterials from a biological source. This research aimed to investigate the antibacterial activity of the seed extract of three-member Artocarpus (Artocarpus heterophyllus, A. champeden, and A. camansi) against MRSA which are the most prevalent causes of infections in patients. Crude seed extracts of three-member Artocarpus were evaluated for their antibacterial activity against MRSA. The antibacterial activity against MRSA of the three extracts was assayed in vitro by the agar well diffusion assay and agar microdilution method and minimum bactericidal concentration. The antibacterial activity, calculated as a zone of inhibition and MIC, MBC values. The Crude seed extracts of three-member Artocarpus showed antibacterial activity against the MRSA in the agar well diffusion assay (1.5-9 mm inhibition diameter). The MIC value of extract showed at 15.62 mg/mL and the MBC value of seed extract of A. heterophyllus at 62.5 mg/mL, A. champeden at 31.25 mg/mL, A. camansi at 250 mg/mL. All seed extracts have the potential to be developed as antibacterial agents, particularly against MRSA strain. Studies on the antibacterial activity against MRSA can provide new information about the benefits seed of members of Artocarpus as a source of natural antibacterial.

Downloads

Download data is not yet available.

Article Details

How to Cite
Prastiyanto, M., Azizah, I., Haqi, H., Yulianto, B., Agmala, A., Radipasari, Z., Astuti, N., & Putri, A. (2020). In-vitro antibacterial activity of the seed extract of three-member Artocarpus towards Methicillin-Resistant Staphylococcus aureus (MRSA). Jurnal Teknologi Laboratorium, 9(2), 128-135. https://doi.org/https://doi.org/10.29238/teknolabjournal.v9i2.237
Section
Bacteriology

References

1. Shin E, Hong H, Park J, Oh Y, Jung J, Lee Y. Characterization of Staphylococcus aureus faecal isolates associated with food-borne disease in Korea. J Appl Microbiol. 2016;121(1):277-286. doi:10.1111/jam.13133.
2. Song J, Hsueh P, Chung DR, et al. Spread of methicillin-resistant Staphylococcus aureus between the community and the hospitals in Asian countries: an ANSORP study. J Antimicrob Chemother. 2011;66(5):1061-1069. doi:10.1093/jac/dkr024.
3. Espadinha D, Faria NA, Miragaia M, Lito LM, Melo-Cristino J, de Lencastre H. Extensive Dissemination of Methicillin-Resistant Staphylococcus aureus (MRSA) between the Hospital and the Community in a Country with a High Prevalence of Nosocomial MRSA. Otto M, ed. PLoS One. 2013;8(4):e59960. doi:10.1371/journal.pone.0059960.
4. Wikaningtyas P, Sukandar EY. The antibacterial activity of selected plants towards resistant bacteria isolated from clinical specimens. Asian Pac J Trop Biomed. 2016;6(1):16-19. doi:10.1016/j.apjtb.2015.08.003.
5. Prastiyanto ME, Wardoyo FA, Wilson W, Darmawati S. Antibacterial Activity of Various Extracts of Averrhoa bilimbi against Multidrug Resistant Bacteria. Biosaintifika J Biol Biol Educ. 2020;12(2):163-168. doi:10.15294/biosaintifika.v12i2.23600.
6. Omara ST. MIC and MBC of Honey and Gold Nanoparticles against methicillin-resistant (MRSA) and vancomycin-resistant (VRSA) coagulase-positive S. aureus isolated from contagious bovine clinical mastitis. J Genet Eng Biotechnol. 2017;15(1):219-230. doi:10.1016/j.jgeb.2017.02.010.
7. Ananda KRT, Sunarno S, Zulfikar MF, Avisha H, Nastain M, Abdullah R. Screening Endophytes of Neem Leaf that Potential Anti-Anthrax through Tests of Anti Staphylococcus Aureus. Biosaintifika J Biol Biol Educ. 2018;10(1):95-100. doi:10.15294/biosaintifika.v10i1.13956.
8. Jiao W, Yuan W, Li Z-Y, et al. Anti-MRSA actinomycins D1-D4 from the marine sponge-associated Streptomyces sp. LHW52447. Tetrahedron. 2018;74(40):5914-5919. doi:10.1016/j.tet.2018.08.023.
9. Lertcanawanichakul M, Chawawisit K. Identification of Streptomyces spp. isolated from air samples and its cytotoxicity of anti-MRSA bioactive compounds. Biocatal Agric Biotechnol. 2019;20(December 2018):101236. doi:10.1016/j.bcab.2019.101236.
10. Nalini S, Sandy Richard D, Mohammed Riyaz SU, Kavitha G, Inbakandan D. Antibacterial macro molecules from marine organisms. Int J Biol Macromol. 2018;115:696-710. doi:10.1016/j.ijbiomac.2018.04.110.
11. de Souza Constantino L, da Rosa Guimarães T, de Oliveira SQ, et al. TSH fraction from Petromica citrina: A potential marine natural product for the treatment of sepsis by Methicillin-resistant Staphylococcus aureus (MRSA). Biomed Pharmacother. 2018;108(July):1759-1766. doi:10.1016/j.biopha.2018.10.023.
12. Prastiyanto ME, Darmwati S, Iswara A, Setyaningtyas A, Trisnawati L, Syafira A. Antimicrobial Activity and Identification The Compounds of Methanol Extract from The Pleurotus Ostreatus Fruiting Body. El-Hayah. 2017;6(1):29. doi:10.18860/elha.v6i1.4082.
13. Bate PNN, Orock AE, Nyongbela KD, Babiaka SB, Kukwah A, Ngemenya MN. In vitro activity against multi-drug resistant bacteria and cytotoxicity of lichens collected from Mount Cameroon. J King Saud Univ - Sci. 2020;32(1):614-619. doi:10.1016/j.jksus.2018.09.001.
14. Lestari SD, Sadiq ALO, Safitri WA, Dewi SS, Prastiyanto ME. The antibacterial activities of bacteriocin Pediococcus acidilactici of breast milk isolate to against methicillin-resistant Staphylococcus aureus. J Phys Conf Ser. 2019;1374:012021. doi:10.1088/1742-6596/1374/1/012021.
15. Abdel-Shafi S, Osman A, Al-Mohammadi A-R, Enan G, Kamal N, Sitohy M. Biochemical, biological characteristics and antibacterial activity of glycoprotein extracted from the epidermal mucus of African catfish (Clarias gariepinus). Int J Biol Macromol. 2019;138:773-780. doi:10.1016/j.ijbiomac.2019.07.150.
16. Sharma A, Flores-Vallejo R del C, Cardoso-Taketa A, Villarreal ML. Antibacterial activities of medicinal plants used in Mexican traditional medicine. J Ethnopharmacol. 2017;208:264-329. doi:10.1016/j.jep.2016.04.045.
17. Jagtap UB, Bapat VA. Artocarpus: A review of its traditional uses, phytochemistry and pharmacology. J Ethnopharmacol. 2010;129(2):142-166. doi:10.1016/j.jep.2010.03.031.
18. Suhartati T, Hadi S. The Bioactivity Test of Artonin E from the Bark of Artocarpus Rigida Blume. Eur J Sci Res. 2008;23:330–337.
19. Perez C, Pauli M, Bazerque P. An Antibiotic Assay by Agar Well Diffusion Method. Acta Biol Med Exp. 1990;15:113-115.
20. Saviano AM, Lourenço FR. Using image analysis to determine gentamicin potency by agar diffusion microbiological assay and its measurement uncertainty. Measurement. 2019;146:315-321. doi:10.1016/j.measurement.2019.06.041.
21. Dolinsky AL. A Consumer Complaint Framework with Resulting Strategies. J Serv Mark. 1994;8(3):27-39. doi:10.1108/08876049410065598.
22. Živković J, Barreira JCM, Stojković D, et al. Phenolic profile, antibacterial, antimutagenic and antitumour evaluation of Veronica urticifolia Jacq. J Funct Foods. 2014;9:192-201. doi:10.1016/j.jff.2014.04.024.
23. Valle DL, Andrade JI, Puzon JJM, Cabrera EC, Rivera WL. Antibacterial activities of ethanol extracts of Philippine medicinal plants against multidrug-resistant bacteria. Asian Pac J Trop Biomed. 2015;5(7):532-540. doi:10.1016/j.apjtb.2015.04.005.
24. Manilal A, Sabu KR, Shewangizaw M, et al. In vitro antibacterial activity of medicinal plants against biofilm-forming methicillin-resistant Staphylococcus aureus: efficacy of Moringa stenopetala and Rosmarinus officinalis extracts. Heliyon. 2020;6(1):e03303. doi:10.1016/j.heliyon.2020.e03303.
25. Wadood A. Phytochemical Analysis of Medicinal Plants Occurring in Local Area of Mardan. Biochem Anal Biochem. 2013;02(04):2-5. doi:10.4172/2161-1009.1000144.
26. Thayalini Thileepan, Vasanthi Thevanesam, Selvaluxmy Kathirgamanathar. Antimicrobial Activity of Seeds and Leaves of Myristica fragrans against Multi-resistant Microorganisms. J Agric Sci Technol A. 2017;7(5):302-308. doi:10.17265/2161-6256/2017.05.002.
27. Tayel AA, Shaban SM, Moussa SH, et al. Bioactivity and application of plant seeds’ extracts to fight resistant strains of Staphylococcus aureus. Ann Agric Sci. 2018;63(1):47-53. doi:10.1016/j.aoas.2018.04.006.
28. Karthy ES, Ranjitha P, Mohankumar A. Antimicrobial Potential of Plant Seed Extracts against Multidrug Resistant Methicillin Resistant Staphylococcus aureus (MDR-MRSA). Int J Biol. 2009;1(1):3-5. doi:10.5539/ijb.v1n1p34.
29. Parekh J, Jadeja D, Chanda S. Efficacy of Aqueous and Methanol Extracts of Some Medicinal Plants for Potential Antibacterial Activity. Turk J Biol. 2005;29:203-210.
30. Pandey A, Singh P. Antibacterial activity of Syzygium aromaticum ( clove ) with metal ion effect against food borne pathogens. Asian J Plant Sci Res. 2011;1(2):69-80.
31. Khalid M, Saeed-ur-Rahman, Bilal M, HUANG D. Role of flavonoids in plant interactions with the environment and against human pathogens — A review. J Integr Agric. 2019;18(1):211-230. doi:10.1016/S2095-3119(19)62555-4.
32. Kong W, Zhao Y, Xing X, et al. Antibacterial evaluation of flavonoid compounds against E. coli by microcalorimetry and chemometrics. Appl Microbiol Biotechnol. 2015;99(14):6049-6058. doi:10.1007/s00253-015-6711-1.
33. Tian C, Chang Y, Zhang Z, et al. Extraction technology, component analysis, antioxidant, antibacterial, analgesic and anti-inflammatory activities of flavonoids fraction from Tribulus terrestris L. leaves. Heliyon. 2019;5(8):e02234. doi:10.1016/j.heliyon.2019.e02234.