544
Abstract Views
418
PDF Download
Hematology

Peripheral stem cell mobilization strategies in patients with autologous hematopoietic cell transplantation: A single center's experience

, , , , , , ,
Pages 159-167

Abstract

This research is to investigate the parameters which may affect the mobilization of stem cells in patients receiving autologous hematopoietic peripheral blood stem cell transplantation (PBSCT). A retrospective study was carried out using the data derived from the medical files of 242 patients who received PBSCT. Descriptive, clinical, and laboratory parameters were compared between patients with successful and unsuccessful stem cell mobilization. Successful stem cell mobilization ratio was 4.463 times higher when preemptive plerixafor was administrated; 1.032 times higher when CD34+ cell count increased 1 unit at the beginning of mobilization. The white blood cell count was inversely correlated with the success of mobilization. An increase of 1 unit in WBC count was associated with a 1.027 times decrease in the success rate. The data indicated that the administration of preemptive plerixafor and CD34+ cell count at the beginning of mobilization were directly related to the success of mobilization after PBSCT. On contrary, WBC count was inversely associated with the success rate.

There is no Figure or data content available for this article

References

1. Gawroński K, Tomasiuk R, Wcisło G, Rzepecki P, Wajs J. Acute Phase Proteins for Monitoring Hematopoietic Recovery After Early Engrafting of CD34+ Peripheral-Blood-Stem-Cells for Autografting or Allografting in Patients with Malignant Diseases. Ann Transplant. 2017;22:323-332. doi:10.12659/AOT.901420.
2. Panch SR, Szymanski J, Savani BN, Stroncek DF. Sources of Hematopoietic Stem and Progenitor Cells and Methods to Optimize Yields for Clinical Cell Therapy. Biol Blood Marrow Transplant. 2017;23(8):1241-1249. doi:10.1016/j.bbmt.2017.05.003.
3. Moog R. Management strategies for poor peripheral blood stem cell mobilization. Transfus Apher Sci. 2008;38(3):229-236. doi:10.1016/j.transci.2008.04.002.
4. Machaczka M, Hägglund H, Staver E, et al. G-CSF mobilized peripheral blood stem cell collection for allogeneic transplantation in healthy donors: Analysis of factors affecting yield. J Clin Apher. 2017;32(6):384-391. doi:10.1002/jca.21524.
5. Gertz MA. review: Current status of stem cell mobilization. Br J Haematol. 2010;150(6):647-662. doi:10.1111/j.1365-2141.2010.08313.x.
6. Jansen J, Thompson JM, Dugan MJ, et al. Peripheral Blood Progenitor Cell Transplantation. Ther Apher. 2002;6(1):5-14. doi:10.1046/j.1526-0968.2002.00392.x.
7. Namdaroglu S, Korkmaz S, Altuntas F. Management of mobilization failure in 2017. Transfus Apher Sci. 2017;56(6):836-844. doi:10.1016/j.transci.2017.11.017.
8. Sahin U, Demirer T. Current strategies for the management of autologous peripheral blood stem cell mobilization failures in patients with multiple myeloma. J Clin Apher. 2018;33(3):357-370. doi:10.1002/jca.21591.
9. Neben K, Mytilineos J, Moehler TM, et al. Polymorphisms of the tumor necrosis factor-alpha gene promoter predict for outcome after thalidomide therapy in relapsed and refractory multiple myeloma. Blood. 2002;100(6):2263-2265. http://www.ncbi.nlm.nih.gov/pubmed/12200397.
10. Schiller G, Rosen L, Vescio R, Spitzer G, Freytes C, Lill M. Threshold dose of autologous CD34 positive peripheral blood progenitor cells required for engraftment after myeloablative treatment for multiple myeloma. Blood. 84:207– 207.
11. Gianni AM. Long-term remission in mantle cell lymphoma following high-dose sequential chemotherapy and in vivo rituximab-purged stem cell autografting (R-HDS regimen). Blood. 2003;102(2):749-755. doi:10.1182/blood-2002-08-2476.
12. Dyson P, Horvath N, Joshua D, et al. CD34+ selection of autologous peripheral blood stem cells for transplantation following sequential cycles of high-dose therapy and mobilisation in multiple myeloma. Bone Marrow Transplant. 2000;25(11):1175-1184. doi:10.1038/sj.bmt.1702408.
13. Horvath N, Hahn U, Joshua D, et al. Long-term follow up of sequential mobilisation and autologous transplantation with CD34-selected cells in multiple myeloma: a multimodality approach. Intern Med J. 2004;34(4):167-175. doi:10.1111/j.1444-0903.2004.00552.x.
14. Oyan B, Koc Y, Kansu E. Successful Salvage with High-Dose Sequential Chemotherapy Coupled with In Vivo Purging and Autologous Stem Cell Transplantation in 2 Patients with Primary Refractory Mantle Cell Lymphoma Presenting in the Leukemic Phase. Int J Hematol. 2005;81(2):155-158. doi:10.1532/IJH97.E0303.
15. Albo C, de la Fuente J, Ares C, Alonso C, Feteira E. Kinetics and immunophenotypic characterization of circulating hematopoietic progenitor cells after peripheral blood stem cell transplantation. Haematologica. 2004;89(7):845-851. http://www.ncbi.nlm.nih.gov/pubmed/15257937.
16. Mendrone A, Arrais CA, Saboya R, Chamone D de AF, Dulley FL. Factors affecting hematopoietic progenitor cell mobilization: An analysis of 307 patients. Transfus Apher Sci. 2008;39(3):187-192. doi:10.1016/j.transci.2008.09.012.
17. Arslan Ö, Moog R. Mobilization of peripheral blood stem cells. Transfus Apher Sci. 2007;37(2):179-185. doi:10.1016/j.transci.2007.08.002.
18. Weaver C, Schwartzberg L, Birch R, et al. Collection of peripheral blood progenitor cells after the administration of cyclophosphamide, etoposide, and granulocyte-colony- stimulating factor: an analysis of 497 patients. Transfusion. 1997;37(9):896-903. doi:10.1046/j.1537-2995.1997.37997454014.x.
19. Haas R, Möhle R, Frühauf S, et al. Patient characteristics associated with successful mobilizing and autografting of peripheral blood progenitor cells in malignant lymphoma. Blood. 1994;83(12):3787-3794. http://www.ncbi.nlm.nih.gov/pubmed/7515721.
20. Kasparu H, Krieger O, Girschikofsky M, Kolb A, Bettelheim P, Lutz D. Factors influencing the timing of peripheral blood stem cell collection (PBSC). Transfus Sci. 1996;17(4):595-600. doi:10.1016/S0955-3886(96)00059-8.
21. Ikeda K, Kozuka T, Harada M. Factors for PBPC collection efficiency and collection predictors. Transfus Apher Sci. 2004;31(3):245-259. doi:10.1016/j.transci.2004.09.008.
22. Elliott C, Samson DM, Armitage S, et al. When to harvest peripheral-blood stem cells after mobilization therapy: prediction of CD34-positive cell yield by preceding day CD34-positive concentration in peripheral blood. J Clin Oncol. 1996;14(3):970-973. doi:10.1200/JCO.1996.14.3.970.
23. Allen ES, Conry-Cantilena C. Mobilization and collection of cells in the hematologic compartment for cellular therapies: Stem cell collection with G-CSF/plerixafor, collecting lymphocytes/monocytes. Semin Hematol. 2019;56(4):248-256. doi:10.1053/j.seminhematol.2019.11.003.
24. Fergadis E, Assi A, Kranidioti E, et al. Plerixafor-aided Mobilization of Peripheral Blood Hematopoietic Stem Cells to Support Subsequent High-dose Chemotherapy After a Prior Autologous Transplant. Clin Lymphoma Myeloma Leuk. 2020;20(2):e50-e57. doi:10.1016/j.clml.2019.11.022.
25. Tolomelli G, Mancuso K, Tacchetti P, et al. The timing of plerixafor addition to G-Csf and chemotherapy affects immunological recovery after autologous stem cell transplant in multiple myeloma. Bone Marrow Transplant. 2020;55(5):946-954. doi:10.1038/s41409-019-0756-1.
26. Yang X, Wan M, Yu F, Wang Z. Efficacy and safety of plerixafor for hematopoietic stem cell mobilization for autologous transplantation in patients with non‑Hodgkin lymphoma and multiple myeloma: A systematic review and meta‑analysis. Exp Ther Med. 2019;18:1141–1148. doi:10.3892/etm.2019.7691.
27. Gutiérrez‐Aguirre CH, Alvarado‐Navarro DM, Palomares‐Leal A, et al. Reduced‐dose plerixafor as a mobilization strategy in autologous hematopoietic cell transplantation: a proof of concept study. Transfusion. 2019;59(12):3721-3726. doi:10.1111/trf.15547.
28. Yoshifuji K, Toya T, Adachi H, et al. Successful hematopoietic stem-cell mobilization with plerixafor plus granulocyte-colony stimulating factor in multiple myeloma patients treated with pomalidomide. Int J Hematol. 2019;110(1):115-118. doi:10.1007/s12185-019-02622-0.
29. Danner E, Bonig H, Wiercinska E. Albumin Modifies Responses to Hematopoietic Stem Cell Mobilizing Agents in Mice. Cells. 2019;9(1):4. doi:10.3390/cells9010004.
30. Marchesi F, Vacca M, Giannarelli D, et al. Lenograstim 5 µg/kg is not superior to biosimilar filgrastim 10 µg/kg in lymphoma patients undergoing peripheral blood stem cell mobilization after chemotherapy: preliminary results from a prospective randomized study. Transfusion. 2018;58(5):1143-1148. doi:10.1111/trf.14533.
31. Kayıkçı Ö, Tekgündüz E, Kaya AH, et al. Biosimilar filgrastim (leucostim®) have similar efficacy in steady-state hematopoietic progenitor cell mobilization compared to original filgrastim (neupogen®) and lenograstim (granocyte®): A retrospective multicenter study. Transfus Apher Sci. 2017;56(6):832-835. doi:10.1016/j.transci.2017.11.016.
32. Lowenthal R, Fabères C, Marit G, et al. Factors influencing haemopoietic recovery following chemotherapy-mobilised autologous peripheral blood progenitor cell transplantation for haematological malignancies: a retrospective analysis of a 10-year single institution experience. Bone Marrow Transplant. 1998;22(8):763-770. doi:10.1038/sj.bmt.1701435.
33. Morales MM, Souza SAL, Loivos LP, et al. Pilot safety study of intrabronchial instillation of bone marrow-derived mononuclear cells in patients with silicosis. BMC Pulm Med. 2015;15(1):66. doi:10.1186/s12890-015-0061-8.
34. Assmus B, Alakmeh S, De Rosa S, et al. Improved outcome with repeated intracoronary injection of bone marrow-derived cells within a registry: rationale for the randomized outcome trial REPEAT. Eur Heart J. 2016;37(21):1659-1666. doi:10.1093/eurheartj/ehv559.
There is no Supplemental content for this article.

How to Cite This

NAMDAROÄžLU, S., Yigenoglu, T. N., Batgi, H., Uncu Ulu, B., Ä°skender, D., Çakar, M., … AltuntaÅŸ, F. (2020). Peripheral stem cell mobilization strategies in patients with autologous hematopoietic cell transplantation: A single center’s experience. Jurnal Teknologi Laboratorium, 9(2), 159–167. https://doi.org/10.29238/teknolabjournal.v9i2.247

Article Metrics

Download Statistics

Downloads

Download data is not yet available.

Other Statistics

Verify authenticity via CrossMark

Copyright and Permissions

Publishing your paper with Jurnal Teknologi Laboratorium (JTL) means that the author or authors retain the copyright in the paper. JTL granted an exclusive reuse license by the author(s), but the author(s) are able to put the paper onto a website, distribute it to colleagues, give it to students, use it in your thesis etc, even commercially. The author(s) can reuse the figures and tables and other information contained in their paper published by JTL in future papers or work without having to ask anyone for permission, provided that the figures, tables or other information that is included in the new paper or work properly references the published paper as the source of the figures, tables or other information, and the new paper or work is not direct at private monetary gain or commercial advantage.

JTL journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge. This journal is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. This license lets others remix, transform, and build upon the material for any purpose, even commercially.

JTL journal Open Access articles are distributed under this Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA). Articles can be read and shared for All purposes under the following conditions:

  • BY: You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • SA:  If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.

Data Availability