Does gender affect immune response in HIV patients?

Main Article Content

Gulcin Sahingöz Erdal Nilgun Isıksacan Ramazan Korkusuz Pınar Kasapoglu Kadriye Kart Yasaroglu

Abstract

Gender differences affect the frequency and course of many diseases. This study aimed to determine the gender distribution in HIV-infected patients and investigate the relationship between gender and immune response. The study included HIV-infected patients who followed up in our hospital in 2018. The patients were divided into HIV RNA negative patients (Group 1) and HIV RNA positive patients (Group 2). Patients with diseases that may affect the immune system and those using drugs that affect the immune system were excluded from the study. The evaluation was made of 549 patients, as 305 patients (45 females 14.75%) in Group 1 and 224 patients (23 females, 9.43%) in Group 2. When the CD4/CD8 ratio of male and female patients was compared in both groups, a lower rate was determined in females (0.71-0.58) than males (0.82-0.93). A negative correlation was determined between HIV RNA and the CD4/CD8 ratio in premenopausal females (p=0.045) and males (≤45 years p=0.0001). Clinical studies of HIV infection have demonstrated better initial viremia control in females with primary infection, faster disease progression, and stronger immune activation than males for the same level of viral replication.

Downloads

Download data is not yet available.

Article Details

How to Cite
Sahingöz Erdal, G., Isıksacan, N., Korkusuz, R., Kasapoglu, P., & Kart Yasaroglu, K. (2021). Does gender affect immune response in HIV patients?. Jurnal Teknologi Laboratorium, 10(1), 14-21. https://doi.org/https://doi.org/10.29238/teknolabjournal.v10i1.261
Section
Virology

References

1. Gonzalo-Gil E, Ikediobi U, Sutton RE. Mechanisms of Virologic Control and Clinical Characteristics of HIV+ Elite/Viremic Controllers. Yale J Biol Med. 2017;90(2):245-259. http://www.ncbi.nlm.nih.gov/pubmed/28656011
2. Miceli MC, von Hoegen P, Parnes JR. Adhesion versus coreceptor function of CD4 and CD8: role of the cytoplasmic tail in coreceptor activity. Proc Natl Acad Sci U S A. 1991;88(7):2623-2627. doi:10.1073/pnas.88.7.2623
3. Margolick JB, Gange SJ, Detels R, O’Gorman MRG, Rinaldo CR, Lai S. Impact of inversion of the CD4/CD8 ratio on the natural history of HIV-1 infection. J Acquir Immune Defic Syndr. 2006;42(5):620-626. doi:10.1097/01.qai.0000223028.55080.9d
4. O’Brien WA, Hartigan PM, Martin D, et al. Changes in plasma HIV-1 RNA and CD4+ lymphocyte counts and the risk of progression to AIDS. Veterans Affairs Cooperative Study Group on AIDS. N Engl J Med. 1996;334(7):426-431. doi:10.1056/NEJM199602153340703
5. Seillet C, Laffont S, Trémollières F, et al. The TLR-mediated response of plasmacytoid dendritic cells is positively regulated by estradiol in vivo through cell-intrinsic estrogen receptor α signaling. Blood. 2012;119(2):454-464. doi:10.1182/blood-2011-08-371831
6. Mefod’ev V V, Iastrebov AF. [Role of agricultural animals in the development of anthropo-pathogenic foci of leptospirosis]. Zhurnal Mikrobiol Epidemiol i Immunobiol. 1965;42(3):142. http://www.ncbi.nlm.nih.gov/pubmed/5882769
7. Stacey AR, Norris PJ, Qin L, et al. Induction of a striking systemic cytokine cascade prior to peak viremia in acute human immunodeficiency virus type 1 infection, in contrast to more modest and delayed responses in acute hepatitis B and C virus infections. J Virol. 2009;83(8):3719-3733. doi:10.1128/JVI.01844-08
8. Altfeld M, Rosenberg ES. The role of CD4(+) T helper cells in the cytotoxic T lymphocyte response to HIV-1. Curr Opin Immunol. 2000;12(4):375-380. doi:10.1016/s0952-7915(00)00103-5
9. Schmitz JE, Kuroda MJ, Santra S, et al. Control of viremia in simian immunodeficiency virus infection by CD8+ lymphocytes. Science. 1999;283(5403):857-860. doi:10.1126/science.283.5403.857
10. Koup RA, Safrit JT, Cao Y, et al. Temporal association of cellular immune responses with the initial control of viremia in primary human immunodeficiency virus type 1 syndrome. J Virol. 1994;68(7):4650-4655. doi:10.1128/JVI.68.7.4650-4655.1994
11. Mackewicz CE, Ortega HW, Levy JA. CD8+ cell anti-HIV activity correlates with the clinical state of the infected individual. J Clin Invest. 1991;87(4):1462-1466. doi:10.1172/JCI115153
12. Clifford GM, Rickenbach M, Lise M, et al. Hodgkin lymphoma in the Swiss HIV Cohort Study. Blood. 2009;113(23):5737-5742. doi:10.1182/blood-2009-02-204172
13. Lang S, Mary-Krause M, Cotte L, et al. Impact of individual antiretroviral drugs on the risk of myocardial infarction in human immunodeficiency virus-infected patients: a case-control study nested within the French Hospital Database on HIV ANRS cohort CO4. Arch Intern Med. 2010;170(14):1228-1238. doi:10.1001/archinternmed.2010.197
14. Hadrup SR, Strindhall J, Køllgaard T, et al. Longitudinal studies of clonally expanded CD8 T cells reveal a repertoire shrinkage predicting mortality and an increased number of dysfunctional cytomegalovirus-specific T cells in the very elderly. J Immunol. 2006;176(4):2645-2653. doi:10.4049/jimmunol.176.4.2645
15. Prins M, Robertson JR, Brettle RP, et al. Do gender differences in CD4 cell counts matter? AIDS. 1999;13(17):2361-2364. doi:10.1097/00002030-199912030-00007
16. Maini MK, Gilson RJ, Chavda N, et al. Reference ranges and sources of variability of CD4 counts in HIV-seronegative women and men. Genitourin Med. 1996;72(1):27-31. doi:10.1136/sti.72.1.27
17. Rickabaugh TM, Jamieson BD. A challenge for the future: aging and HIV infection. Immunol Res. 2010;48(1-3):59-71. doi:10.1007/s12026-010-8167-9
18. Saracino A, Bruno G, Scudeller L, et al. Chronic inflammation in a long-term cohort of HIV-infected patients according to the normalization of the CD4:CD8 ratio. AIDS Res Hum Retroviruses. 2014;30(12):1178-1184. doi:10.1089/aid.2014.0080
19. Lu W, Mehraj V, Vyboh K, Cao W, Li T, Routy J-P. CD4:CD8 ratio as a frontier marker for clinical outcome, immune dysfunction and viral reservoir size in virologically suppressed HIV-positive patients. J Int AIDS Soc. 2015;18:20052. doi:10.7448/IAS.18.1.20052
20. van Lunzen J, Altfeld M. Sex differences in infectious diseases-common but neglected. J Infect Dis. 2014;209 Suppl:S79-80. doi:10.1093/infdis/jiu159
21. Ngo ST, Steyn FJ, McCombe PA. Gender differences in autoimmune disease. Front Neuroendocrinol. 2014;35(3):347-369. doi:10.1016/j.yfrne.2014.04.004
22. Nhamoyebonde S, Leslie A. Biological differences between the sexes and susceptibility to tuberculosis. J Infect Dis. 2014;209 Suppl:S100-6. doi:10.1093/infdis/jiu147
23. Gabriel G, Arck PC. Sex, immunity and influenza. J Infect Dis. 2014;209 Suppl:S93-9. doi:10.1093/infdis/jiu020
24. Baden R, Rockstroh JK, Buti M. Natural history and management of hepatitis C: does sex play a role? J Infect Dis. 2014;209 Suppl:S81-5. doi:10.1093/infdis/jiu057
25. Addo MM, Altfeld M. Sex-based differences in HIV type 1 pathogenesis. J Infect Dis. 2014;209 Suppl:S86-92. doi:10.1093/infdis/jiu175
26. Ziegler S, Altfeld M. Sex differences in HIV-1-mediated immunopathology. Curr Opin HIV AIDS. 2016;11(2):209-215. doi:10.1097/COH.0000000000000237
27. Yurkovetskiy L, Burrows M, Khan AA, et al. Gender bias in autoimmunity is influenced by microbiota. Immunity. 2013;39(2):400-412. doi:10.1016/j.immuni.2013.08.013
28. Meier A, Chang JJ, Chan ES, et al. Sex differences in the Toll-like receptor-mediated response of plasmacytoid dendritic cells to HIV-1. Nat Med. 2009;15(8):955-959. doi:10.1038/nm.2004
29. Markle JG, Fish EN. Sex matters in immunity. Trends Immunol. 2014;35(3):97-104. doi:10.1016/j.it.2013.10.006
30. Lawn SD, Butera ST, Folks TM. Contribution of immune activation to the pathogenesis and transmission of human immunodeficiency virus type 1 infection. Clin Microbiol Rev. 2001;14(4):753-777, table of contents. doi:10.1128/CMR.14.4.753-777.2001
31. Meditz AL, MaWhinney S, Allshouse A, et al. Sex, race, and geographic region influence clinical outcomes following primary HIV-1 infection. J Infect Dis. 2011;203(4):442-451. doi:10.1093/infdis/jiq085
32. Farzadegan H, Hoover DR, Astemborski J, et al. Sex differences in HIV-1 viral load and progression to AIDS. Lancet (London, England). 1998;352(9139):1510-1514. doi:10.1016/S0140-6736(98)02372-1
33. Patterson BK, Landay A, Siegel JN, et al. Susceptibility to human immunodeficiency virus-1 infection of human foreskin and cervical tissue grown in explant culture. Am J Pathol. 2002;161(3):867-873. doi:10.1016/S0002-9440(10)64247-2