Molecular identification of pathogenic bacteria causing foodborne disease in Caulerpa racemosa

Main Article Content

Aprilia Indra Kartika Meutia Srikandi Fitria Vanny Oktaviola

Abstract

Caulerpa racemosa is a green algae consumed by people in northern coastal areas. C. racemosa has a habitat attached to the shallow seabed. C. racemosa usualy consumed fresh without any cooking process so that the contamination of microorganisms can be eaten. Molecular identification using 16S rRNA is needed to determine the type of bacterial contaminants in C. racemosa. The isolates of C. racemosa were cultured in HIA, BAP, and BHI media. Bacteria from BHI media were isolated by DNA, PCR for 16S rRNA gene, and sequencing. Bacteria isolate C. racemosa was found to have the α-hemolytic ability in BAP media. The sequencing analysis showed that the three bacterial colonies of C. racemosa isolate had high similarity with V. parahemolyticus, Caldalkalibacillus mannanilyticus, and Exiguobacterium profundum.

Downloads

Download data is not yet available.

Article Details

How to Cite
Kartika, A., Fitria, M., & Oktaviola, V. (2021). Molecular identification of pathogenic bacteria causing foodborne disease in Caulerpa racemosa. Jurnal Teknologi Laboratorium, 10(1), 31-39. https://doi.org/https://doi.org/10.29238/teknolabjournal.v10i1.276
Section
Bacteriology

References

1. Wantania LL, Ginting EL, Wullur S. Isolasi Bakteri Simbion dengan Spons dari Perairan Tongkeina, Sulawesi Utara. J LPPM Bid SAINS DAN Teknol. 2016;3(1):57-65. https://ejournal.unsrat.ac.id/index.php/lppmsains/article/view/15208.
2. Sri Rahmaningsih, Sri Wilis AM. Bakteri Patogen dari Perairan Pantai dan Kawasan Tambak di Kecamatan Jenu Kabupaten Tuban. Ekol J Ilm Ilmu Dasar dan Lingkung Hidup. 2012;12(1):1-5. doi:10.33751/ekol.v12i1.248.
3. Russell FM, Biribo SSN, Selvaraj G, et al. As a Bacterial Culture Medium, Citrated Sheep Blood Agar Is a Practical Alternative to Citrated Human Blood Agar in Laboratories of Developing Countries. J Clin Microbiol. 2006;44(9):3346-3351. doi:10.1128/JCM.02631-05.
4. Radji M, Puspaningrum A, Sumiati A. Deteksi Cepat Bakteri Escherichia coli Dalam Sampel Air Dengan Metode Polymerase Chain Reaction Menggunakan Primer 16E1 dan 16E2. MAKARA Sci Ser. 2011;14(1):39-43. doi:10.7454/mss.v14i1.474.
5. Singh V, Chaudhary D, Mani I. Molecular characterization and modeling of secondary structure of 16S rRNA from Aeromonas veronii National Bureau of Fish Genetic Resources , Canal Ring Road , PO- Dilkusha , Lucknow ,. Int J Appl Biol Pharm Technol. 2012;3(1). https://www.semanticscholar.org/paper/MOLECULAR-CHARACTERIZATION-AND-MODELING-OF-OF-16S-Singh-Chaudhary/8ee2c44ee39ce36a22b162c612eee6db0c8939bf.
6. Chen H, Rangasamy M, Tan SY, Wang H, Siegfried BD. Evaluation of Five Methods for Total DNA Extraction from Western Corn Rootworm Beetles. Lalueza-Fox C, ed. PLoS One. 2010;5(8):e11963. doi:10.1371/journal.pone.0011963.
7. Aires T, Serrão EA, Kendrick G, Duarte CM, Arnaud-Haond S. Invasion Is a Community Affair: Clandestine Followers in the Bacterial Community Associated to Green Algae, Caulerpa racemosa, Track the Invasion Source. Verbruggen H, ed. PLoS One. 2013;8(7):e68429. doi:10.1371/journal.pone.0068429.
8. Dobretsov S, Dahms H, Harder T, Qian P. Allelochemical defense against epibiosis in the macroalga Caulerpa racemosa var. turbinata. Mar Ecol Prog Ser. 2006;318:165-175. doi:10.3354/meps318165
9. Crapart S, Fardeau M, Cayol J, et al. Exiguobacterium profundum sp. nov., a moderately thermophilic, lactic acid-producing bacterium isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol. 2007;57(2):287-292. doi:10.1099/ijs.0.64639-0.
10. Leela S, Ranishree J, Perumal R, Ramasamy R. Characterization of Struvite Produced by an Algal Associated Agarolytic Bacterium Exiguobacterium aestuarii St. SR 101. J Pure Appl Microbiol. 2019;13(2):1227-1234. doi:10.22207/JPAM.13.2.64
11. Li Y, Liu L, Xu Y, et al. Stress of algicidal substances from a bacterium Exiguobacterium sp. h10 on Microcystis aeruginosa. Lett Appl Microbiol. 2017;64(1):57-65. doi:10.1111/lam.12678.
12. Cong M, Jiang Q, Xu X, Huang L, Su Y, Yan Q. The complete genome sequence of Exiguobacterium arabatum W-01 reveals potential probiotic functions. Microbiologyopen. 2017;6(5):e00496. doi:10.1002/mbo3.496.
13. Yang J, Wang C, Wu J, Liu L, Zhang G, Feng J. Characterization of a Multiresistant Mosaic Plasmid from a Fish Farm Sediment Exiguobacterium sp. Isolate Reveals Aggregation of Functional Clinic-Associated Antibiotic Resistance Genes. Appl Environ Microbiol. 2014;80(4):1482-1488. doi:10.1128/AEM.03257-13.
14. Pitt TL, Malnick H, Shah J, et al. Characterisation of Exiguobacterium aurantiacum isolates from blood cultures of six patients. Clin Microbiol Infect. 2007;13(9):946-948. doi:10.1111/j.1469-0691.2007.01779.x.
15. Shatila F, Yusef H, Holail H. Original Research Article Pigment production by Exiguobacterium aurantiacum FH , a novel Lebanese strain. Int J Curr Microbiol Appl Sci. 2013;2(12):176-191.
16. Chen X, Wang L, Zhou J, et al. Exiguobacterium sp. A1b/GX59 isolated from a patient with community-acquired pneumonia and bacteremia: genomic characterization and literature review. BMC Infect Dis. 2017;17(1):508. doi:10.1186/s12879-017-2616-1.
17. Thompson CC, Thompson FL, Vicente ACP, Swings J. Phylogenetic analysis of vibrios and related species by means of atpA gene sequences. Int J Syst Evol Microbiol. 2007;57(11):2480-2484. doi:10.1099/ijs.0.65223-0.
18. Liu J, Qin K, Wu C, Fu K, Yu X, Zhou L. De Novo Sequencing Provides Insights Into the Pathogenicity of Foodborne Vibrio parahaemolyticus. Front Cell Infect Microbiol. 2021;11(May):1-21. doi:10.3389/fcimb.2021.652957.
19. Urmersbach S, Alter T, Koralage MSG, et al. Population analysis of Vibrio parahaemolyticus originating from different geographical regions demonstrates a high genetic diversity. BMC Microbiol. 2014;14:59. doi:10.1186/1471-2180-14-59.
20. Martinez-Urtaza J, Trinanes J, Abanto M, et al. Epidemic Dynamics of Vibrio parahaemolyticus Illness in a Hotspot of Disease Emergence, Galicia, Spain. Emerg Infect Dis. 2018;24(5):852-859. doi:10.3201/eid2405.171700.
21. Montieri S, Suffredini E, Ciccozzi M, Croci L. Phylogenetic and evolutionary analysis of Vibrio parahaemolyticus and Vibrio alginolyticus isolates based on toxR gene sequence. New Microbiol. 2010;33(4):359-372. http://www.ncbi.nlm.nih.gov/pubmed/21213595.
22. Li P, Xin W, Kang L, et al. Genetic and population analyses of Vibrio parahaemolyticus isolates from three major coastal regions in China. Future Microbiol. 2018;13:1261-1269. doi:10.2217/fmb-2018-0060.
23. Kumar R, Tung T-C, Ng TH, et al. Metabolic Alterations in Shrimp Stomach During Acute Hepatopancreatic Necrosis Disease and Effects of Taurocholate on Vibrio parahaemolyticus. Front Microbiol. 2021;12(April). doi:10.3389/fmicb.2021.631468.
24. Nogi Y, Takami H, Horikoshi K. Characterization of alkaliphilic Bacillus strains used in industry: proposal of five novel species. Int J Syst Evol Microbiol. 2005;55(6):2309-2315. doi:10.1099/ijs.0.63649-0.
25. de Jong SI, van den Broek MA, Merkel AY, et al. Genomic analysis of Caldalkalibacillus thermarum TA2.A1 reveals aerobic alkaliphilic metabolism and evolutionary hallmarks linking alkaliphilic bacteria and plant life. Extremophiles. 2020;24(6):923-935. doi:10.1007/s00792-020-01205-w.
26. Xue Y, Zhang X, Zhou C, et al. Caldalkalibacillus thermarum gen. nov., sp. nov., a novel alkalithermophilic bacterium from a hot spring in China. Int J Syst Evol Microbiol. 2006;56(6):1217-1221. doi:10.1099/ijs.0.64105-0.