165
Abstract Views
46 0
PDF Download
Parasitology

Oxidative stress–driven red blood cell damage underlies anemia in typhoid fever patients

, , ,
Pages 371-385

Abstract

Typhoid fever is a systemic infectious disease associated with considerable morbidity and occasional mortality. Although Salmonella toxins are recognized as key determinants of disease pathology, the contribution of oxidative stress to red blood cell damage and hematological abnormalities in typhoid fever has not been fully elucidated. This study evaluated oxidative stress status and its association with hematological parameters in patients with typhoid fever. Patients with clinical suspicion of typhoid fever were screened using the Typhidot IgM/IgG qualitative enzyme immunoassay. Serum samples from one hundred and two (102) confirmed cases were analyzed for lipid peroxidation using malondialdehyde enzyme immunoassay and for total antioxidant potential using enzyme immunoassay. Full blood count analysis was performed for all participants, and thirty apparently healthy individuals served as controls. Typhoid patients showed significantly reduced mean values of red blood cell count, hemoglobin, hematocrit, mean corpuscular hemoglobin, mean corpuscular hemoglobin concentration, red cell distribution width, and lymphocyte percentage compared with controls (all p < 0.05). In contrast, white blood cell count and granulocyte percentage were significantly elevated (p < 0.05). Circulating free radical levels were markedly higher in typhoid patients than in controls (8.14 ± 1.00 vs 3.31 ± 0.44; p < 0.001), while total antioxidant potential was significantly lower (p < 0.001). Several hematological indices demonstrated strong negative correlations with free radical levels, indicating an association between oxidative stress and red blood cell impairment. These findings suggest that typhoid fever is characterized by a pronounced oxidative imbalance, reflected by increased lipid peroxidation and reduced antioxidant defenses. Beyond the established pathogenic effects of Salmonella toxins, oxidative stress appears to be an important contributory factor to red blood cell damage and hematological disturbances associated with typhoid-related morbidity. Further studies are warranted to clarify the mechanistic role of oxidative injury and to assess the potential benefit of antioxidant-based adjunctive therapeutic strategies in typhoid fever.

There is no Figure or data content available for this article

References

  • 1. Akinyemi KO, Oyefolu AOB, Mutiu WB, Iwalokun BA, Ayeni ES, Ajose SO, Obaro SK. Typhoid fever: tracking the trend in Nigeria. Am J Trop Med Hyg. 2018;99(3 suppl):41-47. doi:10.4269/ajtmh.18-0045
  • 2. Chong A, Lee S, Yang YA, Song J. The role of typhoid toxin in Salmonella Typhi virulence. Yale J Biol Med. 2017;90(2):283-290.
  • 3. Galán JE. Salmonella typhi typhoid toxin. Proc Natl Acad Sci U S A. 2016;113(23):6338-6344. doi:10.1073/pnas.1606335113
  • 4. Smith SI, Seriki A, Ajayi A. Typhoidal and non-typhoidal Salmonella infections in Africa. Eur J Clin Microbiol Infect Dis. 2016;35:1913-1922. doi:10.1007/s10096-016-2760-3
  • 5. World Health Organization. Typhoid. Updated 2023. Accessed October 24, 2023. https://www.who.int/news-room/fact-sheets/detail/typhoid
  • 6. Crump JA. Progress in typhoid fever epidemiology. Clin Infect Dis. 2019;68(suppl 1):S4-S9. doi:10.1093/cid/ciy846
  • 7. Tadesse G, Mitiku H, Teklemariam Z, Marami D. Salmonella and Shigella among asymptomatic street food vendors in Dire Dawa, eastern Ethiopia. Environ Health Insights. 2019;13:1178630219853581. doi:10.1177/1178630219853581
  • 8. Zwadyk P. Enterobacteriaceae: Salmonella and Shigella. In: Joklik WK, Willet HP, Amos B, Wilfert CM, eds. Zinsser Microbiology. 20th ed. Appleton & Lange; 2012:556-565.
  • 9. Wang M, Qazi IH, Wang L, Zhou G, Han H. Salmonella virulence and immune escape. Microorganisms. 2020;8(3):407. doi:10.3390/microorganisms8030407
  • 10. Srivastava N, Matti SI. Erythrocyte plasma membrane redox system in first-degree relatives of type 2 diabetic patients. Int J Diabetes Mellit. 2010;2:119-121.
  • 11. Habte L, Tadesse E, Ferede G, Amsalu A. Typhoid fever: clinical presentation and associated factors in febrile patients visiting Shashemene Referral Hospital, southern Ethiopia. BMC Res Notes. 2018;11(1):605. doi:10.1186/s13104-018-3713-y
  • 12. Stamm WE. Measurement of pyuria and its relation to bacteriuria. Am J Med. 2013;75(1):53-58.
  • 13. Hurley D, McCusker MP, Fanning S, Martins M. Salmonella–host interactions: modulation of the host innate immune system. Front Immunol. 2014;5:481. doi:10.3389/fimmu.2014.00481
  • 14. Neupane DP, Dulal HP, Song J. Enteric fever diagnosis: current challenges and future directions. Pathogens. 2021;10:410. doi:10.3390/pathogens10040410
  • 15. Pilonieta MC, Moreland SM, English CN, Detweiler CS. Salmonella enterica infection stimulates macrophages to hemophagocytose. mBio. 2014;5(6):e02211. doi:10.1128/mBio.02211-14
  • 16. McLean S, Bowman LAH, Poole RK. Peroxynitrite stress is exacerbated by flavohemoglobin-induced stress in Salmonella typhimurium. Microbiology. 2010;156(pt 12):3556-3565. doi:10.1099/mic.0.044214-0
  • 17. Rhen M. Salmonella and reactive oxygen species: a love-hate relationship. J Innate Immun. 2019;11:216-226.
  • 18. Huyut Z, Şekeroğlu MR, Balahoroğlu R, Karakoyun T, Çokluk E. Oxidation sensitivity of red blood cells and carbonic anhydrase activity in stored human blood. Biomed Res Int. 2016;2016:3057384.
  • 19. Ahmad R. Basics of free radicals and antioxidants. In: Free Radicals, Antioxidants and Diseases. IntechOpen; 2018. doi:10.5772/intechopen.76689
  • 20. Gwozdzinski K, Pieniazek A, Gwozdzinski L. Reactive oxygen species and red blood cell damage in chronic kidney disease. Oxid Med Cell Longev. 2021;2021:6639199. doi:10.1155/2021/6639199
  • 21. Orrico F, Laurance S, Lopez AC, et al. Oxidative stress in healthy and pathological red blood cells. Biomolecules. 2023;13:1262. doi:10.3390/biom13081262
  • 22. Ozougwu JC, Obiukwu CE, Obimba KC, Elom MO, Usanga VU. Haematological changes associated with typhoid fever. Int J Res Pharm Biosci. 2016;3(6):21-26.
  • 23. Ndako JA, Dojumo VT, Akinwumi JA, et al. Haematological changes in typhoid fever patients. Heliyon. 2020;6(5):e04002. doi:10.1016/j.heliyon.2020.e04002
  • 24. Anusuya B, Sumathi S. Haematological alterations due to typhoid fever. Int J Pharmacol Pharmacother. 2021;4(2):210-215.
  • 25. Hale JP, Winlove CP, Petrov PG. Effect of hydroperoxides on red blood cell membrane mechanics. Biophys J. 2011;101(8):1921-1929.
  • 26. Pizzino G, Irrera N, Cucinotta M, et al. Oxidative stress: harms and benefits for human health. Oxid Med Cell Longev. 2017;2017:8416763. doi:10.1155/2017/8416763
  • 27. Abu CC, Oshomole O, Adeyemi ST. Prevalence of typhoid fever in Minna, Nigeria. Int Res J Sci Eng Technol. 2012;3(1):1-13.
  • 28. Etouke TN, Ful KG, Nzesseu V, et al. Biochemical and hematological parameters in enteric fever. Cureus. 2023;15(6):e40498. doi:10.7759/cureus.40498
  • 29. Fowler CC, Chang SJ, Gao X, et al. Emerging insights into typhoid toxin biology. Curr Opin Microbiol. 2017;35:70-77. doi:10.1016/j.mib.2017.01.012
  • 30. Ozcan A, Ogun M. Biochemistry of reactive oxygen and nitrogen species. In: Basic Principles and Clinical Significance of Oxidative Stress. IntechOpen; 2015. doi:10.5772/61193
  • 31. Mohanty JG, Nagababu E, Rifkind JM. Red cell oxidative stress and aging. Front Physiol. 2014;5:84. doi:10.3389/fphys.2014.00084
  • 32. Rajashekariah V. The erythrocyte: a unique cell. IntechOpen; 2022. doi:10.5772/intechopen.101007
  • 33. Sen G, Ghosal J, Naskar K, Biswas T. Altered calcium homeostasis in erythrocytes. Ann Trop Med Parasitol. 2000;94(1):43-53. doi:10.1080/00034983.2000.11813512
  • 34. Hertz L, Huidjes R, Llaude-Planas E, et al. Intracellular calcium and anemia. Front Physiol. 2017;8:673. doi:10.3389/fphys.2017.00673
  • 35. Boulet C, Doerig CD, Carvalho TG. Manipulating eryptosis. Front Cell Infect Microbiol. 2018;8:419. doi:10.3389/fcimb.2018.00419
  • 36. Gogoi M, Shreenivas MM, Chakravortty D. Salmonella–macrophage paradigm. J Innate Immun. 2019;11(3):289-299. doi:10.1159/000490953
  • 37. Ruby T, McLaughlin L, Gopinath S, Monack D. Salmonella’s long-term host relationship. FEMS Microbiol Rev. 2012;36(3):600-615. doi:10.1111/j.1574-6976.2012.00332.x
  • 38. Dwyer DJ, et al. Antibiotics induce redox-related alterations. Proc Natl Acad Sci U S A. 2014;111(20):E2100-E2109. doi:10.1073/pnas.140187611
  • 39. Belenky P, et al. Antibiotics induce toxic metabolic perturbations. Cell Rep. 2015;13:968-980.
  • 40. Cordiano R, Di Gioacchino M, Mangifesta R, et al. Malondialdehyde as an oxidative stress marker. Molecules. 2023;28:5979. doi:10.3390/molecules28165979
  • 41. Pellegrini N, Vitaglione P, Granato D, Fogliano V. Total antioxidant capacity measurement. J Sci Food Agric. 2020;100:5064-5078.

How to Cite This

Ilesanmi, A. O., Alikpang, A. S., Ogunwale , K. T., & Ilesanmi, R. (2025). Oxidative stress–driven red blood cell damage underlies anemia in typhoid fever patients. Jurnal Teknologi Laboratorium, 14(2), 371–385. https://doi.org/10.29238/teknolabjournal.v14i2.413

Article Metrics

Download Statistics

Downloads

Download data is not yet available.

Other Statistics

Verify authenticity via CrossMark

Copyright and Permissions

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Publishing your paper with Jurnal Teknologi Laboratorium (JTL) means that the author or authors retain the copyright in the paper. JTL granted an exclusive reuse license by the author(s), but the author(s) are able to put the paper onto a website, distribute it to colleagues, give it to students, use it in your thesis etc, even commercially. The author(s) can reuse the figures and tables and other information contained in their paper published by JTL in future papers or work without having to ask anyone for permission, provided that the figures, tables or other information that is included in the new paper or work properly references the published paper as the source of the figures, tables or other information, and the new paper or work is not direct at private monetary gain or commercial advantage.

JTL journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge. This journal is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. This license lets others remix, transform, and build upon the material for any purpose, even commercially.

JTL journal Open Access articles are distributed under this Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA). Articles can be read and shared for All purposes under the following conditions:

  • BY: You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • SA:  If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.

Data Availability