18
Abstract Views
0 0 5
PDF Download
Biotechnology

Dose-dependent modulatory effects of Pimpinella alpina (Purwoceng) root extract on TNF-α and CRP in a CCl₄-induced hepatic injury model

, ,
Pages 335-345

Abstract

The liver is highly susceptible to oxidative stress and inflammatory damage, particularly following exposure to hepatotoxic agents such as carbon tetrachloride (CCl₄). Concerns regarding the adverse effects of conventional anti-inflammatory therapies have increased interest in herbal alternatives, including purwoceng (Pimpinella alpina Molk), a medicinal plant rich in flavonoids and saponins with potential hepatoprotective activity. This study aimed to evaluate the effects of purwoceng root extract on tumor necrosis factor-alpha (TNF-alpha ) and C-reactive protein (CRP) levels in a CCl₄-induced liver injury model. Twenty-five male Wistar rats were randomly assigned to five groups: a negative control, a positive control receiving curcumin, and three treatment groups administered purwoceng extract at doses of 50, 100, or 150 mg/200 g body weight. Serum TNF-alpha and CRP levels were quantified using enzyme-linked immunosorbent assay (ELISA). Data were analyzed using the Kruskal–Wallis or one-way ANOVA tests, as appropriate. The purwoceng-treated groups exhibited lower TNF-alpha levels compared with the negative control; however, these reductions were not statistically significant. CRP levels demonstrated dose-dependent variability, with the lowest concentration observed at the 50 mg dose and a significant increase at the 150 mg dose, indicating a potential shift toward pro-oxidant or pro-inflammatory effects at higher doses. Although a statistically significant dose–response relationship was not established, these findings reflect the complex biological activity of purwoceng extract. In conclusion, purwoceng may exert modulatory effects on inflammatory markers in CCl₄-induced liver injury, but determination of an optimal therapeutic window is essential. Further studies involving bioactive compound isolation, pharmacokinetic and toxicity evaluation, and time-course analysis are warranted to clarify its hepatoprotective potential.

There is no Figure or data content available for this article

References

  • 1. Campo JA Del, Gallego P, Grande L. Role of inflammatory response in liver diseases: Therapeutic strategies. World J Hepatol. 2018;10(1):1-7. doi:10.4254/wjh.v10.i1.1
  • 2. Saputro AA, Nasihun T, Hussaana A. Propolis Extracted Using CMCE Decreases TNF-α and C-Reactive Protein level of CCl4- Induced Liver Damage in Rats. Sains Medika: Jurnal Kedokteran dan Kesehatan. 2021;12(1).
  • 3. Laine L. Gastrointestinal Effects of NSAIDs and Coxibs. J Pain Symptom Manage. 2003;25(2):32-40. doi:10.1016/S0885-3924(02)00629-2
  • 4. Ferraz CR, Carvalho TT, Manchope MF, et al. Therapeutic Potential of Flavonoids in Pain and Inflammation: Mechanisms of Action, Pre-Clinical and Clinical Data, and Pharmaceutical Development. Molecules. 2020;25(3):762. doi:10.3390/molecules25030762
  • 5. Khan M, Karima G, Khan M, Shin J, Kim J. Therapeutic Effects of Saponins for the Prevention and Treatment of Cancer by Ameliorating Inflammation and Angiogenesis and Inducing Antioxidant and Apoptotic Effects in Human Cells. Int J Mol Sci. 2022;23(18):10665. doi:10.3390/ijms231810665
  • 6. Jing W, Xiaolan C, Yu C, Feng Q, Haifeng Y. Pharmacological effects and mechanisms of tannic acid. Biomedicine & Pharmacotherapy. 2022;154:113561. doi:10.1016/j.biopha.2022.113561
  • 7. Widowati W, Jasaputra DK, Sumitro SB, et al. Direct and Indirect Effect of TNFα and IFNγ Toward Apoptosis in Breast Cancer Cells. Molecular and Cellular Biomedical Sciences. 2018;2(2):60. doi:10.21705/mcbs.v2i2.21
  • 8. Sovia E, Anggraeny D. Sugar Palm Fruits (Arenga pinnata) as Potential Analgesics and Anti-Inflammatory Agent. Molecular and Cellular Biomedical Sciences. 2019;3(2):107. doi:10.21705/mcbs.v3i2.63
  • 9. Andari D, Khan FI, Jakfar SI. Methanol Extract of Katuk (Sauropus androgynus) Leaves as an Anti-inflammatory Agent: Animal Study in Carrageenan-induced Rat Models of Inflammation. Molecular and Cellular Biomedical Sciences. 2022;6(3):129. doi:10.21705/mcbs.v6i3.263
  • 10. Girsang E, Lister INE, Ginting CN, et al. Chemical Constituents of Snake Fruit (Salacca zalacca (Gaert.) Voss) Peel and in silico Anti-aging Analysis. Molecular and Cellular Biomedical Sciences. 2019;3(2):122. doi:10.21705/mcbs.v3i2.80
  • 11. Koyama Y, Brenner DA. Liver inflammation and fibrosis. Journal of Clinical Investigation. 2017;127(1):55-64. doi:10.1172/JCI88881
  • 12. Virma SG, Adelin P, Mona L. Karakteristik Pasien Sirosis Hepatis di Rumah Sakit Dr Achmad Mochtar Bukittinggi Periode Tahun 2018 – 2020. Jurnal Kedokteran Nanggroe Medika. 2023;6(1).
  • 13. Randa VD. Pengaruh Ekstrak Akar Purwoceng (Pimpinella Alpine) Terhadap Respon Nyeri Studi Eksperimental Pada Mencit Balb/c Yang Diinduksi Asam Asetat 1%. Undergraduate thesis. Universitas Sultan Agung; 2018. Accessed January 11, 2025. https://repository.unissula.ac.id/11240/
  • 14. Arjadi F, Gumilas NSA, Harini IM, Indriani V, Rujito L. The Hepatotoxic and Nephrotoxic Effects of Purwoceng (Pimpinella pruatjan Molk.) Roots Ethanol Extract Administration in Subchronic Dose. Molekul. 2021;16(2):163. doi:10.20884/1.jm.2021.16.2.729
  • 15. Sproston NR, Ashworth JJ. Role of C-Reactive Protein at Sites of Inflammation and Infection. Front Immunol. 2018;9. doi:10.3389/fimmu.2018.00754
  • 16. Rezzani R, Franco C, Rodella LF. Curcumin as a Therapeutic Strategy in Liver Diseases. Nutrients. 2019;11(10):2498. doi:10.3390/nu11102498
  • 17. Nesci S, Spagnoletta A, Oppedisano F. Inflammation, Mitochondria and Natural Compounds Together in the Circle of Trust. Int J Mol Sci. 2023;24(7):6106. doi:10.3390/ijms24076106
  • 18. Yang YM, Seki E. TNFα in Liver Fibrosis. Curr Pathobiol Rep. 2015;3(4):253-261. doi:10.1007/s40139-015-0093-z
  • 19. Ginwala R, Bhavsar R, Chigbu DGI, Jain P, Khan ZK. Potential Role of Flavonoids in Treating Chronic Inflammatory Diseases with a Special Focus on the Anti-Inflammatory Activity of Apigenin. Antioxidants. 2019;8(2):35. doi:10.3390/antiox8020035
  • 20. Perrone P, D’Angelo S. Hormesis and health: molecular mechanisms and the key role of polyphenols. Food Chemistry Advances. 2025;7:101030. doi:10.1016/j.focha.2025.101030
  • 21. Jomova K, Alomar SY, Valko R, et al. Flavonoids and their role in oxidative stress, inflammation, and human diseases. Chem Biol Interact. 2025;413:111489. doi:10.1016/j.cbi.2025.111489
  • 22. Jomova K, Raptova R, Alomar SY, et al. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: chronic diseases and aging. Arch Toxicol. 2023;97(10):2499-2574. doi:10.1007/s00204-023-03562-9
  • 23. Hsieh CT, Wang J, Chien KL. Association between dietary flavonoid intakes and C-reactive protein levels: a cross-sectional study in Taiwan. J Nutr Sci. 2021;10:e15. doi:10.1017/jns.2021.8
  • 24. Jodynis-Liebert J, Kujawska M. Biphasic Dose-Response Induced by Phytochemicals: Experimental Evidence. J Clin Med. 2020;9(3):718. doi:10.3390/jcm9030718
  • 25. Hu L, Luo Y, Yang J, Cheng C. Botanical Flavonoids: Efficacy, Absorption, Metabolism and Advanced Pharmaceutical Technology for Improving Bioavailability. Molecules. 2025;30(5):1184. doi:10.3390/molecules30051184
  • 26. Carvalho MTB, Araújo-Filho HG, Barreto AS, Quintans-Júnior LJ, Quintans JSS, Barreto RSS. Wound healing properties of flavonoids: A systematic review highlighting the mechanisms of action. Phytomedicine. 2021;90:153636. doi:10.1016/j.phymed.2021.153636
  • 27. Gómez de Cedrón M, Navarro del Hierro J, Reguero M, et al. Saponin-Rich Extracts and Their Acid Hydrolysates Differentially Target Colorectal Cancer Metabolism in the Frame of Precision Nutrition. Cancers (Basel). 2020;12(11):3399. doi:10.3390/cancers12113399
  • 28. Rahmat E, Lee J, Kang Y. Javanese Turmeric (Curcuma xanthorrhiza Roxb.): Ethnobotany, Phytochemistry, Biotechnology, and Pharmacological Activities. Evid Based Complement Alternat Med. 2021;2021:9960813. doi:10.1155/2021/9960813
  • 29. Peng Y, Ao M, Dong B, et al. Anti-Inflammatory Effects of Curcumin in the Inflammatory Diseases: Status, Limitations and Countermeasures. Drug Des Devel Ther. 2021;Volume 15:4503-4525. doi:10.2147/DDDT.S327378
  • 30. Lichwiarska E, Ożgo M, Pierzchała M, et al. Impacts of Andrographis paniculata supplementation on health and productivity in monogastric farm animals: A comprehensive review. Animal Nutrition. Published online October 2025. doi:10.1016/j.aninu.2025.07.004

How to Cite This

Randa, V. D., Trisnadi, S., & Sumarawati, T. (2025). Dose-dependent modulatory effects of Pimpinella alpina (Purwoceng) root extract on TNF-α and CRP in a CCl₄-induced hepatic injury model. Jurnal Teknologi Laboratorium, 14(2), 335–345. https://doi.org/10.29238/teknolabjournal.v14i2.574

Article Metrics

Download Statistics

Downloads

Download data is not yet available.

Other Statistics

Verify authenticity via CrossMark

Copyright and Permissions

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Publishing your paper with Jurnal Teknologi Laboratorium (JTL) means that the author or authors retain the copyright in the paper. JTL granted an exclusive reuse license by the author(s), but the author(s) are able to put the paper onto a website, distribute it to colleagues, give it to students, use it in your thesis etc, even commercially. The author(s) can reuse the figures and tables and other information contained in their paper published by JTL in future papers or work without having to ask anyone for permission, provided that the figures, tables or other information that is included in the new paper or work properly references the published paper as the source of the figures, tables or other information, and the new paper or work is not direct at private monetary gain or commercial advantage.

JTL journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge. This journal is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. This license lets others remix, transform, and build upon the material for any purpose, even commercially.

JTL journal Open Access articles are distributed under this Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA). Articles can be read and shared for All purposes under the following conditions:

  • BY: You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • SA:  If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.

Data Availability